

EFPF: European Connected Factory Platform for
Agile Manufacturing

WP5: EFPF Add-ons

D5.16: EFPF Interfacing, Evolution and Extension
– Final Report

Vs: 1.0

Deliverable Lead and Editor: Anouar Mabrouk, ASC

Contributing Partners: ASC, CERTH, C2K, FIT, ICE, LINKS, SRDC, SRFG, VLC

Date: 2022-12

Dissemination: Public

Status: EU Approved

Grant Agreement:
825075

Short Abstract

This deliverable is an update to D5.13: EFPF Interfacing,
Evolution and Extension that was published in M18 of the project
duration, in June 2020. The deliverable summarizes the final
outcomes of tasks: T3.3 “Integrated Marketplace Framework and
Realisation”, T5.2 “EFPF Portal” and T2.5 “Ecosystem, Evolution
and Extensions Requirements”.

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public II / V

Document Status

Deliverable Lead

Anouar Mabrouk, ASC

Internal
Reviewer 1

Simon Osborne, C2K

Internal
Reviewer 2

Martin Lorenz, ASI

Type

Deliverable

Work Package

WP2: Requirements Elicitation and Pilot Scenarios
WP5: EFPF Add-ons

ID

D5.16: EFPF Interfacing, Evolution and Extension

Due Date

2022-12

Delivery Date

2022-12

Status

EU Approved

History

See Annex B.

Status

This deliverable is subject to final acceptance by the European Commission.

Further Information

www.efpf.org

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its sole
risk and liability.

http://www.efpf.org/
http://www.efpf.eu/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public III / V

Project Partners:

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public IV / V

Executive Summary

This deliverable summarizes the activities that took place in three interrelated tasks during
the EFPF project. These tasks relate to Ecosystem, Evolution and Extension Requirements;
Integrated Marketplace and the EFPF Portal. The deliverable presents key rational of these
tasks, along with the overview of the technical progress and the latest status.

The EFPF Marketplace has been extended reshaped and redesigned to serve a much-
improved user experience. The marketplace has been also extended with connections to
additional external marketplaces and with an automated agent-based marketplace, which
supports online bidding. Additionally, to further support the business case of the EFPF
Marketplace, the Accountancy Service has been integrated to provide event logging and
invoice data retrieval and generation from connected marketplaces."

The EFPF Portal has been set as the unified entry point of the whole EFPF platform allowing
users to register, login, browse and access all the tools and services provided by the
ecosystem. Since then, the EFPF Portal has grown in terms of tools, platforms and
documentations

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public V / V

Table of Contents

0 Introduction .. 6
1 Ecosystem, Evolution and Extensions Requirements .. 8

1.1 Requirements for a Federated Ecosystem .. 8
1.2 Requirements for the Evolution of a Federated Ecosystem 12
1.3 Requirements for the Extension of a Federated Ecosystem 14
1.4 Positive Governance for the Growth of the EFPF Platform Ecosystem 16

2 EFPF Marketplace ... 19
2.1 Integrated Marketplace Framework ... 19

2.1.1 Scope and Relationship with Other EFPF Components 20
2.1.2 Requirements and Realisation .. 25
2.1.3 Deployment ... 26
2.1.4 Execution and Usage .. 27
2.1.5 Limitations and Further Development.. 27

2.2 Automated Agent-based Marketplace and Online Bidding 28
2.2.1 Scope and Relationship with Other EFPF Components 28
2.2.2 Requirements and Realisation .. 30
2.2.3 Deployment ... 33
2.2.4 Execution and Usage .. 39
2.2.5 Major Updates from M18 ... 43

2.3 Accountancy Service ... 43
2.3.1 Scope and Relationship with Other EFPF Components 43
2.3.2 Requirements and Realisation .. 44
2.3.3 Deployment ... 44
2.3.4 Execution and Usage .. 44
2.3.5 Limitations and Further Development.. 47

3 EFPF Portal ... 48
3.1 Current Status ... 48

3.1.1 User Resgistration ... 49
3.1.2 Login ... 49
3.1.3 Company Registration ... 50
3.1.4 Dashboard ... 52
3.1.5 Value Propositions .. 53
3.1.6 Federated Search ... 54

3.2 Scope and Relationship with Other Components .. 56
3.3 Requirements and Realisation... 57
3.4 Deployment in the EFPF Platform (Installation) ... 57
3.5 Execution and Usage .. 58
3.6 Limitations and Further Developments .. 58

4 Conclusion and Outlook ... 59
Annex A: History .. 60
Annex B: References ... 60
Annex C: Data Models and Interfaces Error! Bookmark not defined.

http://www.efpf.org/

0 Introduction

0.1 EFPF Project Overview

EFPF - European Connected Factory Platform for Agile Manufacturing - is a project funded
by the H2020 Framework Programme of the European Commission under Grant Agreement
825075 and conducted from January 2019 until December 2022. It engages 30 partners
(Users, Technology Providers, Consultants and Research Institutes) from 11 countries with
a total budget of circa 16M€. Further information: www.efpf.org

In order to foster the growth of a pan-European platform ecosystem that enables the
transition from “analogue-first” mass production, to “digital twins” and lot-size-one
manufacturing, the EFPF project will design, build and operate a federated digital
manufacturing platform. The Platform will be bootstrapped by interlinking the four base
platforms from FoF-11-2016 cluster funded by the European Commission, early on. This will
set the foundation for the development of EFPF Data Spine and the associated toolsets to
fully connect the existing platforms, toolsets and user communities of the 4 base platforms.
The federated EFPF platform will also be offered to new users through a unified Portal with
value-added features such as single sign-on (SSO), user access management
functionalities to hide the complexity of dealing with different platform and solution providers.

0.2 Deliverable Purpose and Scope

This is a final report presented at M48 milestone of the EFPF project. The purpose of this
document “D5.16 EFPF Interfacing Evolution and Extension – Final Report”, is to present a
technical overview of the EFPF Portal services as well as EFPF Integrated Marketplace and
a final update about the ecosystem creation, evolution, and extensions of the EFPF platform.
This deliverable articulates the vision behind introduction and continuous development of
these services as well as their benefits to prospective users. The report presents an account
of the development made since project start, with more focus on elaborating new
developments after M18.

0.3 Target Audience

This deliverable aims primarily at external platform and marketplace provider, which want to
offer their services and tools through the EFPF platform.

0.4 Deliverable Context

This document provides information to multiple software components of the EFPF platform.
Its relationship to other documents is as follows:

• D2.4: EFPF Platform Requirements: Provides detailed information about the EFPF
platform and its requirements.

• D5.2: EFPF Security and Governance: Provides detailed information about security,
privacy, and governance in the context of EFPF.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 7 / LIX

0.5 Document Structure

This deliverable is broken down into the following sections:

• Section 1: Ecosystem, Evolution and Extensions Requirements: Provides
information about the implementation of requirements needed for ecosystem creation,
evolution and extension of the EFPF platform.

• Section 2: EFPF Marketplace: Provides information about the software component
produced by Task 3.3: Integrated Marketplace Framework and Realisation.

• Section 2.3.1: Scope and Relationship with Other EFPF Components
The Accountancy Service has been developed within the project as an integral part of the
EFPF Marketplace Framework and provides insight into users’ interactions with the EFPF
Platform as well as its connected marketplaces. This includes transactions that EFPF users
make on different marketplaces, which are linked with the EFPF Marketplace Framework.

A taxonomy has been setup to identify the trackable user actions in which action items are
listed in ‘subject, verb, object’ manner and these actions include users’ basic interactions
with various parts of the EFPF Platform such as login, register, inviting other users as well
as payments realized on external marketplaces if the user has initiated his/her journey from
EFPF Marketplace. In this way, when a user performs a certain action on either EFPF Portal
or a connected marketplace, corresponding information is sent to Accountancy Service to
be persisted so that it can later be visualized to extract valuable information.

The Accountancy Service has been developed based on Elastic Stack which comprises the
following components:

• Elasticsearch: Stores, indexes, provides, and manages user logs to be later analysed.
Since relational databases are not well-suited for managing log data, a NoSQL
database like Elasticsearch is preferred due to their flexible and schema-free
document structures, enabling analytics of the log data.

• Logstash: Gathers user behaviour data from various components of the EFPF
platform, executes different transformations and filters the content, before sending the
data to the Elasticsearch component

• Kibana: Enables interactive dashboards, filters and advanced data analysis and
exploration of user logs.

In addition, the following custom modules listed below were developed to provide
additional functionality:

• Reporting Component: Creates periodic (i.e. monthly) reports for each dashboard at
the end of each month in PDF format and sends it as an email

• Invoicing Component: Processes all the payment data accumulated within each
month, sums all the amounts from successful transactions realized on each
marketplace, calculates a corresponding cashback amount, and creates a detailed
invoice with the information including purchased products, dates of transactions as well
as the calculated commission for each product. The invoice will then be used to charge
marketplaces.

0.5.1 Requirements and Realisation

Tracking the user behaviour enables businesses to make productive decisions and develop
effective business strategies. This is a valuable feature of a federated digital platforms, and
the Accountancy Service provides this to support the long-term sustainability of the EFPF

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 8 / LIX

platform, beyond the span of the project. The Accountancy Service also aims to track and
trace a user’s journey across the EFPF ecosystem and collect data about the transactions
they make on different marketplaces. The collected data logs are then used to carry out a
cashback mechanism enabling a commission charge or a referral fee to be made to the
marketplace where a EFPF user carries out a business transaction (Figure 23). In addition
to the log collection, customizable dashboards are also needed for better and easier tracking
of user interactions. Therefore, in order to process the accumulated log data and address
all the above requirements, the Accountancy Service uses Elastic Stack (Elasticsearch,
Logstash, Kibana) as an advanced log persistence, monitoring, processing, and
visualization framework.

Figure 23: Accountancy Service - Cashback Process

0.5.2 Deployment

Accountancy Service is a standalone component that runs independently of existing EFPF
tools and services and can be integrated with unlimited number of external marketplaces.
Each of the 5 components of the Accountancy Service has its own Docker image and runs
on a corresponding Docker container. Moreover, a production-ready configuration allowing
Elasticsearch running on a multi-node cluster is also available. Currently, all the components
of the Accountancy Service run on a production server hosted by C2K and a test server
hosted by SRDC.

0.5.3 Execution and Usage

Accountancy Service uses Logstash as a data ingestion and server-side data processing
pipeline. The logs sent to Logstash are forwarded to Elasticsearch for persistence after
executing certain ingestion pipelines; and then Kibana dashboards are automatically
updated based on the certain fields stored on Elasticsearch. In other words, Accountancy
Service uses a basic data model for visualization and logs must conform to a basic data
model so that Kibana dashboards can be updated automatically

Currently, there is a running instance of Logstash component that is registered to the EFPF
Service Registry, which is publicly available through a public endpoint so that events from
EFPF Portal and external marketplaces can be sent using HTTP POST method. Events are
modelled as a JSON message related with the action conforming to the data model. This
will be enough for the Accountancy Service to capture the data and update the dashboards.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 9 / LIX

Accountancy Service uses Kibana to visualize the data ingested through Logstash and
persisted on Elasticsearch. Kibana provides mechanisms to create interactive dashboards
with filtering as well as advanced data analysis capabilities and Accountancy Service
provides 4 different dashboards for log visualization. Furthermore, all these dashboards can
either be accessed on the Kibana instance hosted on EFPF production environment and
EFPF Portal Admin pages. Details of the 4 dashboards can be seen below:

• Payments Dashboard: Displays all payments realized on marketplaces as well as the
corresponding cashback (commission) amounts calculated for each transaction
(Figure 24).

• Marketplace Usage Dashboard: Visualizes marketplaces usages in terms of most
frequently used search keywords, queried platforms, and their distribution (Figure
25Error! Reference source not found.).

• Platform Engagement Dashboard: Displays base platform visits and tool/service
usages and tracks the frequency of these usages (Figure 26).

• User Activities: Visualizes user actions such as login and register (Figure 27).

In addition to the central functionalities offered by the Elastic Stack, Accountancy Service
also provides extra features such as preparing monthly reports based on the accumulated
data and generate invoices in accordance with the commissions calculated for successful
transactions that users perform on the external marketplaces connected to the EFPF
Platform. Since these functionalities require custom implementations, these add-on modules
are written in JavaScript and provided as a Docker image. At the end of each month, both
modules process relevant data of the target month and generates 2 PDF documents: One
for the monthly report including all charts updated for the target month and one for the
invoice document containing all the transaction details (e.g. purchased products, their
prices, transaction dates, calculated commission, etc.) to charge each external marketplace.

Figure 24: Accountancy Service - Payments Dashboard

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 10 / LIX

Figure 25. Accountancy Service Marketplace Usage Dashboard

Figure 26: Accountancy Service - Platform Engagement Dashboard

Figure 27: Accountancy Service - User Activities Dashboard

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 11 / LIX

0.5.4 Limitations and Further Development

Currently, there are no limitations regarding the Accountancy service development and
previously identified limitations were resolved. New marketplaces can be integrated, and
new dashboards will be created upon request to track different types of user interactions.

• EFPF Portal: Provides information about the software component produced by Task
5.2: EFPF Portal.

• Section 4: Conclusion and Outlook: Concludes this deliverable and provide a brief
outlook for each component.

• Annexes:

• Annex A: Document History

• Annex B: References

0.6 Document Status

This document is listed in the Description of Action as public. Therefore, details which may
temper the security of the platform, or its components are not content of this deliverable.

0.7 Document Dependencies

This document is final part of the deliverables that describes the EFPF portal together with
the EFPF Integrated Marketplace and its subcomponents. The last iteration has been
submitted in M18 in D5.3 - EFPF Interfacing, Evolution and Extension. This document
summarize the update that took place since then.

0.8 Glossary and Abbreviations

A definition of common terms related to EFPF.

0.9 External Annexes and Supporting Documents

Annexes and Supporting Documents:

• None

0.10 Reading Notes

• None

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 12 / LIX

1 Ecosystem, Evolution and Extensions Requirements

1.1 Requirements for a Federated Ecosystem

A core goal of the EFPF project is to develop an ecosystem that demonstrates a federated
approach to functionality, processes, and users in a bid to ensure the initiative is sustainable.
This

A core goal of the EFPF project has been to develop an ecosystem that demonstrates a
federated approach to functionality, processes, and users in a bid to ensure the initiative is
sustainable. This is motivated by the shift in architecture design in recent times in favour of
microservices enabling enhanced flexibility, rather than the proprietary digital platform
approach that has been attributed with vendor lock in, proprietary standards, inhibiting
evolution.

A federated approach was needed to bring together different stakeholders into a level
playing field where they could perform collaborative activities and develop relationships such
as those between providers and suppliers of products and services. The federation model
also supported the creation of competitiveness networks, which can be composed of multi-
industry partners; and facilitates knowledge exchange between different stakeholders
through collaborative processes. Requirements to guide these processes needed to be
understood e.g. what is the source of the requirements, their type (whether user-oriented,
non-functional, technical), who are they applicable to etc. In this respect, a dedicated task
in the EFPF Project (T2.5: EFPF Interfacing, Evolution and Extension) gathered
requirements from a range of ecosystem stakeholders starting with the partners involved in
the task, which come from a variety of domains including Industrial, Research and Technical.
Further requirements were collected from partner interactions, interactions and
collaborations with different projects, from the open calls experimenters and other activities
and stakeholders engaged through the project duration. Task 2.5 (T2.5) ran throughout the
duration of the project with the aim to continuously feed new/emerging requirements into the
project (development, business modelling, ecosystem creation etc) activities.

The requirements for a federated ecosystem gathered in the project are relevant to the
following roles:

• Developers: Technical users who may develop and wish to deploy Tools and Services
in the EFPF ecosystem

• Systems Integrators: Technical users who want to leverage the latest smart factory
and digital manufacturing toolsets, in order to be able to offer them to customers

• Platform managers: Interested in extending the scope of an existing platform or to
start a new platform

• Manufacturing Managers: Business focussed users who would like to access,
reliable mature and productivity generating tools and services

The guiding requirements for the federated ecosystem, established through the EFPF
project are described in D5.3 and an update on these is provided in this deliverable. These
requirements are defined in the context of a federated ecosystem of the digital
manufacturing platforms. Naturally, these requirements have evolved overtime as the
project developed links with other stakeholders and explored new relationships (e.g. through
open-call mechanism).

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 13 / LIX

The guiding requirements for the federated ecosystem established through the EFPF project
are described in D5.3 and copied below. Alongside these, justification of how each guiding
requirement has been realised through the duration of project is also provided.

Guiding Requirement Realisation Details

A federated ecosystem should have
multiple systems and platform virtually
connected through software interfaces for
seamless authorised access. Ideally, the
connectivity should extend beyond the
software accessibility and interoperability
aspects to also support interactions
between tools/service providers and user
communities

The EFPF platform successfully integrated
and federated the 4 key base platforms. In
addition, the project also federates multiple
external platforms such as SMECluster,
ValueChain’s Network Portal, B2Bmarket,
and ZDMP. To enable interactions between
user communities, EFPF provides
Matchmaking and Team Formation
mechanisms that can be used to find
suitable partners and collaborators. Details
of the realisation are documented in D5.4
final report.

The federation should provide necessary
trust, security, and privacy mechanisms to
ensure that the partners and their
interactions in the ecosystem are safe from
potential threats like cyber-attacks, session
riding, hijacking etc

The EFPF Platform developed and
implemented the EFPF Security Portal to
provide the necessary trust, security and
privacy mechanism through the use of
Industry Standards such as OAuth2.0 and
Json Web Tokens (JWT’s). In addition, a
comprehensive governance framework is
developed (in WP5 and documented in
D5.15) to provide necessary guidelines for
preserving trust and privacy aspects. The
prescribed guidelines are translated into
technical requirements and implemented at
the Platform and Portal level to address
security and privacy concerns.

The federation should support the
heterogeneity of the ecosystem and provide
necessary governance mechanisms that
allow the relevant control (data, access,
business models etc) to remain within the
partners

Based on the definition of a comprehensive
platform governance framework, necessary
governance mechanisms are implemented
as terms and conditions and also security
policies that have been put in place to
support the control of data by respective
data owners. The implementation of the
governance mechanism not only covers the
access and utilisation of the platform but
also the exchange and use of data across
different systems and services. In this
respect, specific security policies are
implemented to secure the Service
Registry, pub-sub message bus and the API
Security Gateway

The federation should implement
governance procedures and technology

The governance framework (developed in
WP5 and documented in D5.2 and D5.15)
establish the essence of the federation

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 14 / LIX

mechanism that act as a deterrent for any
potential monopoly

model adopted by the EFPF platform.
Based on the federation model, the EFPF
platform provides level playing field for all
platforms and systems. There are no
preferences and privileges assigned to any
specific platform or system in the federation
and open nature of the EFPF platform
allows for new entrants to be easily
integrated in the federation through
interoperability of the APIs supported by the
Data Spine. Therefore, the user needs and
ease of use are the key criteria of success
expected to drive the popularity and growth
of the federated platforms in the EFPF
ecosystem.

The platforms in the federation should be
conducive to integration and
interoperability. The federation should allow
users to connect and operate through APIs,
applications, and third-party service
libraries. This would further eliminate the
possibilities of monopoly and vendor lock-in

While the interoperability of connected
platforms was first realised with the
integration of the 4 base platforms, the
realisation of this guiding requirement has
also been enhanced through the integration
of additional platforms through respective
API’s. This has included the integration of
platforms such as SMECluster,
ValueChain’s Network Portal, B2BMarket
and ZDMP. The API connectivity is tracked
and updated through a dedicated interface
contract management mechanism
developed in the EFPF platform

The federated ecosystem should provide an
easy to use service integration and
interoperability platform/mechanism to
make the provision and consumption of
services as easy as possible, enhance
developer productivity and enable
collaboration amongst them.

The platform integration process has been
designed to allow new platforms to easily
integrate their products, service and tools,
through the Service Registry Tool. Through
the registration of external marketplace
API’s in the Service Registry, federated
platforms can easily integration current
offerings in the EFPF marketplace. Detailed
documentation is made available on an
open documentation portal accessible
through the EFPF Portal. The validation of
service integration and interoperability has
have been performed during the piloting
and open-call experimentation phases of
the project.

The service integration and interoperability
platform/mechanism offered by the
federated ecosystem should make use of
standards and its design should be flexible
enough to have the choice of multiple open
source technologies to realise its

The integrations and interoperability in the
EFPF federation are supported the Data
Spine, which implements standardised data
management techniques, and itself is
standardised through a CWA. The Data
Spine is designed as a flexible and open

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 15 / LIX

conceptual components. This would also
help in avoiding vendor lock-in.

mechanism that can be used to integrate
platforms and services at different levels.

The service integration and interoperability
platform/mechanism offered by the
federated ecosystem should have inbuilt
support for standard communication
protocols and for data transformation
tools/languages, such as XSLT (Extensible
Stylesheet Language Transformations),
that are widely used in the industry.

Through the development and
implementation of the Data Spine’s
Integration Flow Engine, the EFPF platform
is able to offer inbuilt support for data
transformation to a wide array of formats /
protocols/ standards. This is also evidenced
by the implementation of indexing flows in
federated search to federate data from
individual platforms which all have different
data formats.

The service integration and interoperability
platform/mechanism offered by the
federated ecosystem should be scalable
and should support high availability and
high throughput.

In the development of the Data Spine’s
Integration Flow Engine, designed as an
interoperability mechanism, Apache NiFi
was selected as the base technology due to
the considerations for scalability and
extensibility built in to the tool. This included
extension points such as Processes,
Controller Services, Reporting Tasks,
Prioritizers, and Customer User Interfaces.

The federation should promote the use of
standards for the design and
implementation of components of the
federated ecosystem to make the
integration of new services, tools, and
platforms effortless.

The EFPF Project has provided a focus on
promoting standards throughout the project
with OAuth2.0 standards implemented as a
means for both securing applications and
enabling SSO between federated platforms.
Alongside this, the provision of the Data
Spine Service registry which implements
standards such as JSON, for the
registration of services operating on a range
of communication protocols such as HTTP,
MQTT, AMQPS.

The federation should provide adequate
documentation in the form of HowTos,
Tutorials and API documentation of
provided services in order to ease the
development of applications using
distributed services from the various
platforms and service providers within the
EFPF ecosystem. The federation should
promote the use of standard deployment
practices such as containerization to make
the deployments of components of the
federated ecosystem easy to manage and
maintain.

The EFPF Project has provided extensive
documentation to all components of the
platform, including connected tools and
services. This has been unified in central
interface, The EFPF Dev Portal. In this
documentation portal, where appropriate,
each tools, service, or platforms has
provided an array of guides including;
Overview, Quickstart Guide, Admin Guide,
Developer Guide & User Guide.

The federated ecosystem should inherently
provide services, tools, utilities that are
widely used to realise the common use
cases in the domain.

Alongside the core Data Spine
components, the EFP project has also
provided a set of tools, or “ecosystem
enablers”, to support the realisation of
common use cases. An example of this has

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 16 / LIX

included the Access Consent Delegation
Framework, or Pub Sub Security Service, to
allow secure and user managed interaction
with the Data Spine Message Bus

The legislative regulation across different
regions may be different so it is important to
have a fair geographical distribution of
vendors or datacentres to sustain the
federated ecosystem

The EFPF Platform and in particular, the
EFPF Data Spine has been designed to be
deployable in a distributed manner through
clustering mechanisms. With this approach
the EFPF Platform can be deployed across
geographically distant servers.

1.2 Requirements for the Evolution of a Federated Ecosystem

The process of evolution of a federated ecosystem should be self-governing in nature and
encompass change across all aspects of the characteristics that make up a federated
system. Naturally, evolution happens over time based on many different factors that are
often not controllable or even predictable (such as behaviours of different actors,
environmental changes, interactions between different entities etc). As an ecosystem grows
(e.g. with the number of actors, the interactions, different types of activities etc) the need for
supporting new actors, new roles, new interactions as well as adaptation of existing systems
and processes also grows. Therefore, the requirements for the evolution of a federated
ecosystem need to highlight the need for certain level of flexibility, openness, and
adaptability in the underlying federation (mechanisms) to ensure its evolution overtime.

While the guiding principles defined for the evolution of a federated ecosystem were defined
in D5.13, the realisation of the guiding principles can be seen documented below.

Guiding Principle Realisation Details

Diverse user base: This will ensure that
the market vulnerability isn’t a risk by
naturally evolving to target users in new
domains.

While the EFPF platform was initial setup
and tested for the 3 pilot scenarios, the
platforms user base was then extended
through the projects’ open call for
experimentation, in which 20 sub-projects
were selected from a diverse range of
domains including Agricultural, B2B
documentation exchange and project
planning use cases.

Heterogeneity: Use of microservice
architecture should support a natural
evolution of functionality and process to
support in an adaptive robust way.

The core components of the Data Spine
have been setup under a microservice
architectural approach to allow for the
extensibility of the platform in a
standardised manner.

Geographical distribution: This is also an
essential characteristic, where evolution
can be naturally supported through

The EFPF Platform has been designed to
be deployed in a geographically distributed
manner through clustering techniques.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 17 / LIX

distributed deployment of microservices
and interoperability, but ultimately driven by
human processes.

Through the development of integration and
deployment scripts, microservices can be
added and removed from the deployment
stack as needed.

Interoperability: Interoperability
mechanisms can support these
evolutionary step changes

A core aspect of the EFPF Platform is the
EFPF Data Spine, which provides platform
users with mechanisms for interoperability
through Data Spine components such as
Service Registry and Integration Flow
Engine, in which data transformation
processes can be designed to enable or
enhance interoperability.

Based on the above guiding principles, the guiding requirements for the evolution of a
federated ecosystem were also defined in D5.13, and can be seen below, alongside a
description of how each requirement has been realised within the Platform.

Guiding Requirement Realisation Details

A federated ecosystem in essence should
constantly evolve to include new partners,
tools and services; in order cater to the
users need in present and in the future.

Extensibility of the platform to new partners,
tools and services has been demonstrated
through the completion of the open call
phase of the project, with the integration of
20 sub-projects represented by 22
additional partners, tools, and service within
the EFPF federated ecosystem.

There should be feedback loop to capture
user experiences and proper user
interfaces should be defined to allow the
multi-part interactions to take place and
keep the ecosystem moving.

As part of the EFPF Open Call activity, the
setup and deployment of the Tikki Ticketing
platform allowed for a live feedback loop in
which users could report any issues being
faced or request support from EFPF
partners and administrators. Tikki is
available through the EFPF Portal and with
the Integration to the EFPF Security Portal,
this also allowed owners of deployed tools
and service to directly respond to relevant
issues in Tikki.

The interoperability feature of the platform
should attract new software integration to
develop opportunities for different types of
interactions and business.

Through the completion of the open call for
experimentation, the EFPF platform
successfully integrated a range of new
software components, thus increasing its
overall offering and attractiveness to
potential customers, including those in new
domains such as Agriculture.

Overtime the ecosystem should adapt and
accommodate new stakeholders and usage
scenarios.

The adaptability of the platform and relevant
ecosystem was also tested through the
open-call where sub-projects from different
domains and business scenarios tested
existing solutions and developed new

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 18 / LIX

solutions to demonstrate the usage
potential of EFPF services in diverse
domains

In a federated ecosystem, the involved
parties rely on the agreed API Contracts or
Interface Contracts for communicating with
each other. However, as the participant
services evolve, the upgradation of APIs
becomes necessary and inevitable.
Therefore, the federated ecosystem should
define Interface Contract policies that allow
the Service Providers to convey plans to
deprecate/upgrade their APIs to the Service
Consumers in advance allowing a smoother
transition/collaboration.

Through the design and development of the
Data Spine Service Registry, it was ensured
that an adequate versioning system was in
place to enable API integrations to be
managed more easily. Through the addition
of versioning and expiry fields in the service
registry schema, this enables developers to
effectively plan around API upgrade and
deprecations. In addition, integrations with
the EFPF Message Bus has allowed for the
announcement of service registrations, and
de-registrations through subscription to a
defined topic.

1.3 Requirements for the Extension of a Federated Ecosystem

To support the goals of evolution step changes, a framework of processes will be needed to
support the concrete development steps and allow the extension to happen in a managed
manner that is disseminated to all stakeholders. The microservices architecture and REST
communications, rather than close coupled systems, naturally supports extension of the
ecosystem. However, topics including deployment, version management, service lifecycles
and protocol support will all need to be planned for and delegated to ensure the process of
extending the ecosystem is handled particularly as the it grows.

The high-level guiding requirements defined in D5.13 for the extension of the platforms
federated ecosystem have been listed below alongside a justification of how this guiding
requirement has been realised throughout the course of the EFPF Project.

Guiding Requirement Realisation Details

The federated platform should be extensible
and there should be interfaces for the
inclusion of new services and gateways
available for data exchange.

The EFPF Platform has now developed and
made publicly available, a range of
comprehensive guides that document the
process for the inclusion of new Tools and
Services. Several guides have been
developed depending on the particular
scenario faced by the user, and are
available in the EFPF Dev Portal.

There should be openly accessible APIs for
the integration of external tools.

A range of API’s have been made available
in the EFPF Platform for the integration of
new tools, mainly the Service Registry API,
in which all registered users are able to view
and discover currently registered services.
Through obtaining the correct roles or
permissions, users can then also add new
or update existing services, due to the

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 19 / LIX

security provided by the API Security
Gateway.

The federation should provide necessary
support, not only in terms of interfaces and
connectors, but also in terms of human
resources (experts) who can facilitate the
onboarding of new partners and technologies.

Through the establishment of Tikki, the
dedicated ticketing support platform, a
direct channel of communication was
enabled between all EFPF users and the
relevant experts from each component,
tool, or service. In areas of support where
issues may be expected to be reported
more frequently, due to high usage (e.g.
EFS Integration), dedicated teams were
setup to increase the availability of expert
resources and ensure all tickets can be
handled in a timely fashion.

The federated ecosystem should promote
cross domain and cross border interactions
and therefore the extension mechanisms
should be able to capture the differences in
languages, approaches and techniques.

The cross-domain interactions were
supported through a number of pilot and
open-call applications. For example, a
blockchain-based track and trace
application in the CE pilot of the EFPF
project facilitates the interactions between
different types of users. Moreover, several
open call sub-projects developed solutions
that involved cross domain interactions and
interconnectivity. However, the cross-
border aspects (i.e. differences in
languages, approaches and techniques)
has not be tested so far. The reason for that
is non-availability of relevant requirements
and user needs both from the pilot partners
and also from the open-call sub-projects.

Documentation should be available to
describe the scenarios in which different
extensions should be done.

Within the EFPF Platform, an extensive
documentation hub has been provided, the
EFPF Dev Portal, to support users in the
scenarios they face. In this regard, 4 key
guides were introduced to enable new users
to get started with sufficient information.
This included a “User Guide 101” for;
“Tool/Service Consumers”, “Composite
Application Developers”, “Tool, Service,
Data Providers”, and “Platform Providers”.

The service integration and interoperability
platform/mechanism offered by the federated
ecosystem should follow a modular and
extensible architecture, thereby making it
possible to add support for new
communication protocols, data transformation
tools, etc.

Within the EFPF Date Spine, the Service
Registry has been designed to support the
registration of services independent of the
communication protocol used and where
the communication protocol can be defined.
Although the service is predominately
designed for the registration of REST API
based services, Message Bus Topics can

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 20 / LIX

also be registered with either MQTTS or
AMQPS protocols. While it is expected the
Data Spine Integration Flow Engine will be
able to handle the data transformation
needs of EFPF users, should a use case
arise where NiFi is not considered fit for
purpose, additional transformation tools,
could also be added through the offered
integration and deployment mechanism.

1.4 Positive Governance for the Growth of the EFPF Platform

Ecosystem

The complexity of digital platform ecosystems comes with the decision-making twist
between different sectors and different actors operating at multiple levels, including
organisational, sectoral, local, regional, national, international, etc. The EFPF is an emerging
ecosystem of multi-sided digital platforms and requires governance mechanisms to be in
place, to effectively reach its goals and create sustainable outcomes. The governance
mechanisms for digital platform ecosystems need to reflect on the lawful interactions of key
stakeholders, be they owners of the platforms, companies using the platform, or developers,
users, advertisers, economists, computer scientists, governments, or regulators. To
stimulate positive interaction payoffs within the platform ecosystem, both platform
stakeholders and platform technology enablers must be regulated and governed.

The D5.2 "EFPF Security and Governance" describes the EFPF Governance Framework
(eFGF) that incorporates platform organizational standards, strategic planning, business
rules and norms of behaviour within the ecosystem, software standards, regulatory
requirements, and other aspects which need to be continuously monitored and assessed
from the perspective of various EFPF users (stakeholders).

The eFGF covers five functional areas:

• AREA 1: Terms and conditions (“Terms of Use”, “User Agreement”, or “Terms of
Service Agreement”): it outlines the terms and conditions the user must agree to in
order to interact with the EFPF platform. Well-established terms and condition-related
rules prevent misunderstanding between the EFPF platform owner and the users, by
defining e.g. Intellectual Property Rights (IPRs) protection, limiting responsibilities
towards third parties, setting platform rules and the consequences for violating these
rules, etc.

• AREA 2: Architecture and IT governance: it includes a policy-based control of
information to meet all legal, regulatory, risk, and business demands. The focus in on
the actual software development and maintenance activities of the IT that are aligned
with the business objectives of the platform, e.g. with the European Factory
Foundation.

• AREA 3: Data governance, service policies, APIs policies and SDKs include those
rules that define i.e., processes and controls to ensure that information at the data level
is true, accurate, and unique (not redundant). Data policies address policies related to
personal data (data belonging to the user of the EFPF platform), corporate data (data
belonging to the company that user of the EFPF platform represents), community data
(data belonging to the group of users that getter together over the EFPF platform for

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 21 / LIX

sharing specific interests, e.g. forum, working teams, etc.), sectoral data (data that
constitute a specific sector, e.g. Smart Manufacturing sector, Automotive Driving
sector, etc.) and potential infrastructural data lakes (data that constitute a larger body
of data, e.g. Common European Data Space [EC-DATA20]).

• AREA 4: Marketplace rules, trust and reputation that define the expected behaviour in
the platform ecosystem, in order to create expected positive effects.

• AREA 5: The existing laws and regulations at the international and national levels,
including the EU Network and Information Security (NIS) Directive with the goal to
enhance cybersecurity across the EU; Incident notification for DSPs in the context of
the NIS Directive; GDPR [GDPR18] that adopts the core principles required for
personal data processing; Ethics Guidelines for Trustworthy AI, by Independent High-
Level Expert Group (HLEG) on AI set by the EC [HLEG19]; Ethically Aligned Design
(EAD) [EAD19] which is an initiative created by the IEEE Standards Association and
covers many topics of interest to EFPF development, including e.g. general (ethical)
principles; how to embed values into autonomous intelligent systems; methods to
guide ethical design; safety and beneficence of artificial general intelligence and
artificial superintelligence; personal data and individual access control; reframing
autonomous weapons systems; economics and humanitarian issues; law; affective
computing; classical ethics in AI; policy; mixed-reality, and well-being.

One of the greatest business challenges is how to get competitors to cooperate with each
other in the platform ecosystem. Here, efficiency gains, Return of Investments (ROIs) and
other incentives need to be supported through platform ecosystems by selecting the
adequate governance mechanisms. To support the further growth of the EFPF ecosystem,
we focus on these attributes that promote the common good and limit negative impact and
conflicts either via the platform or in the platform ecosystem. Some examples of such
attributes are: Inclusion, participation, accountability, etc.

The authors in [GRIN07][GISS12] emphasize good governance as an essential driver of
sustainable development. Implementing good governance practices requires knowledge
about existing actors (stakeholders) and their business- and government-driven rules, as
well as knowledge about possible benefits and losses, and other external effects that can
cause both positive and negative effects (conflicts).

In EFPF, we adopt the concept of "positive platform governance" as discussed in [MATR17],
that emphasizes the importance of shared decision making with the platforms' contributors,
through the following principles (see Figure 1 below):

• Inclusion - which is about defining the roles and power for actors with diverse levels of
participations.

• Participation - which is based on principles of fairness, simplicity, transparency, and
trust integrated in all decision-making processes of the platform.

• Autonomy - which helps assuring that all contributors affected by those decisions will
be able to participate.

• Recognition of the generated value - ensuring reward system for all contributors in the
ecosystem.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 22 / LIX

Figure 1: Adopting Positive Governance Mechanisms in EFPF

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 23 / LIX

2 EFPF Marketplace

This section provides a general view on digital marketplaces in the EFPF context and
information about the EFPF Marketplace and components created within this task, which
are the following:

• Integrated Marketplace Framework: This component provides access to items listed
on external marketplaces at different platforms provided by EFPF partners.

• Automated Agent-based Marketplace and Online Bidding: This component
provides an agent-based marketplace with online bidding functionality.

• Accountancy Service: This subcomponent provides features to track & trace and
credit users of connected marketplaces.

Marketplaces are common components in digital manufacturing platforms. They provide
collaboration and interaction between a platform and its service and tool provider and its
customers via a catalogue framework. This allows products to be listed and therefore
browsed based on categorisation and searched according to search terms and filter
conditions. An outcome of this is the natural knowledge transfer and technology exchange
between users. Marketplaces may list only products provided by its platform or provide
products coming from third party platforms.

In this context marketplaces can be divided into two types:

• Hosting marketplace: Products listed are provided by the hosting platform of the
marketplace, which can offer standard ecommerce functionalities such as listing new
products, which are uploaded directly to the marketplace, and checkout functionalities,
which will handle customer transactions within the marketplace.

• Integrated marketplace: Products listed are provided by marketplaces from external
platforms. This type does not offer the above-mentioned ecommerce functionalities. In
this scenario products are listed on the external marketplace, which also provides the
transaction and checkout functionalities.

2.1 Integrated Marketplace Framework

The Integrated Marketplace Framework (IMF) within EFPF is implemented as two
components: The EFPF Marketplace Backend and the EFPF Marketplace UI. External
marketplaces provide their products through API interfaces, so the EFPF Marketplace
Backend can retrieve the products and the EFPF Marketplace UI can list these products,
providing typical filter and sorting mechanisms, with the ecommerce featured provided by
the external marketplace.

To expand the product offering, users will be enabled to publish products. As connected
external marketplaces may provide different feature sets, the IMF provides a selection of
marketplaces for the best fit of new products. With this approach it will be possible to support
different types of products and their needs. For example, a physical product has other
marketplace requirements than a software product. Therefore, it may be possible that future
external marketplace may be added and offer itself as an additional target for new products.

The above-mentioned processes allow a fast integration of external marketplaces and their
products into the IMF and therefore is more suited for a federated environment, where
multiple marketplaces co-exist. As each marketplace may have a different data model and
also a different design of the marketplace, the EFPF Marketplace Backend as a part of the
IMF can list products in a unified interface.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 24 / LIX

2.1.1 Scope and Relationship with Other EFPF Components

The Integrated Marketplace Framework provides access to multiple external marketplaces.
Currently the following external marketplaces are connected and listed in the EFPF
Marketplace UI:

• vf-OS1

• Nimble2

• SMECluster3

• WASP

• ZDMP4

External marketplaces can been adapted to enable Single Sign-On (SSO), so users
registered on the EFPF platform can access these marketplaces without having to register
again. Nevertheless, an external marketplace may ask for additional information.

Figure 2: Marketplace Framework - User Interface Screenshot from EFPF Portal

The following list provides an overview of the relationships to connected EFPF components
and a description of the functionality they enable:

1 https://www.vf-os.eu/
2 https://www.nimble-project.org/
3 https://www.smecluster.com/
4 https://www.zdmp.eu/

http://www.efpf.org/
https://www.vf-os.eu/
https://www.nimble-project.org/
https://www.smecluster.com/
https://www.zdmp.eu/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 25 / LIX

• EFPF Portal: This component acts as a container for the EFPF Marketplace UI as can
be seen in Figure 2. The EFPF portal provides the EFPF Marketplace UI for non-
registered users on its landing page and for registered users via the menu.

• EFPF Service Registry: This component provides the API endpoints and other
information to the EFPF Marketplace Backend to be able to retrieve product data from
external marketplaces.

 External Marketplaces

This section provides an overview and description of each connected marketplace. Each
marketplace exposes its product catalogue via REST interfaces. The internal marketplace
framework can retrieve the products and list them including a link to the details page of a
product inside each of the external marketplaces.

vf-OS Store

The vf-OS Store has been developed in the scope of the European research project vf-OS.
It provides a one-stop-shop for the extension of the vf-OS platform, which are called vApps.
Users can browse listed applications, filtering by categories, providing feedback and view
dependencies. It provides an easy checkout through various payment methods.

Key features:

• Browser applications as a customer

• Easy checkout

• Manage uploaded applications

• Product Upload

The vf-OS Store is also being used for uploading products for any downloadable software
applications by the Integrated Marketplace Framework inside the EFPF Portal.

Figure 3: Marketplace Framework - vf-OS Marketplace Screenshot

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 26 / LIX

SMECluster Marketplace

The SMECluster Marketplace is an integrated part of the SMECluster website providing an
overview of available tools and services. These tools and services may consist both of
software and hardware and additional set-up work. Therefore, many listings cannot be
bought right away but the customer provides its contact data for more information and a
personal contact.

Key features:

• Browse products by categories

• Provide rich descriptions

• Support products including hardware setup

• Checkout and payment feature

• Product Upload

The SMECluster Marketplace is being used to provide tools and services which require a
manual configuration or adaptations to be used at the customers premises. Products can be
listed on the SMECluster Marketplace through a manual process by contacting the
SMECluster Marketplace owner.

Figure 4: Marketplace Framework - SMECluster Marketplace Screenshot

Nimble Marketplace

The Nimble Marketplace has been developed in the scope of the European research project
Nimble and provided a federated, multi-sided and cloud services-based business
ecosystem. The Nimble Marketplace is the front-end of this ecosystem and enables users
to buy, offer and negotiate.

Key features:

• Company and product search

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 27 / LIX

• Product catalogues

• Advanced checkout incl. negotiations

• Product Upload

The Nimble Marketplace is used to provide physical products. The Nimble Marketplace will
be used to provide physical products. Product upload can be performed by the registered
EFPF users.

Figure 5: Marketplace Framework - Nimble Marketplace Screenshot

WASP Marketplace

The WASP Marketplace is part of the Workflow and Service Automation Platform. This
marketplace provides software services ready to use in websites and other components.
Services are sorted by categories and detailed information are provided.

Key features:

• Web services

• Bubble navigation

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 28 / LIX

Figure 6: Marketplace Framework - WASP Marketplace Screenshot

ZDMP Marketplace

The ZDMP Marketplace is being developed in the scope of the European H2020 research
project ZDMP5 and provides “...a digital platform for connected smart factories for achieving
excellence in manufacturing through zero-defect processes and products thanks to the use
of zero-defect core services for developing APPs”. The ZDMP Marketplace is the front-end
of this ecosystem and enables users to buy, offer and upload applications.

Key features:

• Browse products by categories

• Checkout and payment feature

5 https://www.zdmp.eu/

http://www.efpf.org/
https://www.zdmp.eu/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 29 / LIX

Figure 7 Marketplace Framework – ZDMP Marketplace Screenshot

2.1.2 Requirements and Realisation

The Integrated Marketplace Framework has the following requirements:

• List products provided by external marketplaces

• Track, trace and credit users

• Upload new items

The first requirement is already implemented by listing products from external marketplaces
mentioned in Section 2.1.1. The second requirement (which is a set of requirements) are
being provided by the Accountancy Service. The third requirement has been fulfilled by
enabling the product upload through external marketplaces (vf-OS, SMECluster and
Nimble).

The EFPF Marketplace UI is implemented as a web component based on the Angular web
application framework. As a web component, it has to be embedded in a website in order to
use it (realized via the EFPF Portal). To retrieve products from external marketplaces this
component connects to the EFPF Marketplace Backend, which retrieves the API endpoints
of external marketplaces via the EFPF Service Registry.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 30 / LIX

Figure 8EFPF Marketplace - Architecture Snapshot

2.1.3 Deployment

The following sections will provide basic information about the deployment of both
components of the Integrated Marketplace Framework.

 EFPF Marketplace UI

The EFPF Marketplace UI in its current form will be integrated as a JavaScript file in a
website and requires little integration effort. After adding the file to the website, which may
differ based on the used framework, the developer can use the “EFPF-marketplace” HTML
element in their source code as shown in Error! Reference source not found.. At this point
the element requires a valid Java Web Token (JWT) to retrieve products from the EFPF
platform.

Figure 9 Marketplace Framework – Source Code Deployment

As to be seen in Error! Reference source not found. the EFPF Marketplace UI requires
two attributes to be provided:

• IdToken: This optional attribute contains the access token of the user, if registered.
It will be used for user tracking.

• Configuration: This mandatory attribute expects a class containing the following
information:

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 31 / LIX

o URI to the EFPF Marketplace Backend

o URI to the EFPF Portal backend

o UUID for this EFPF Marketplace instance

 EFPF Marketplace Backend

For the deployment of the EFPF Marketplace Backend a Docker image is being created via
GitLab CI/CD and is being used by the CI script provided by the
https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-deployment repository. When
running the deployment CI script, configuration data will be injected by replacing the
placeholders mentioned in the developer section.

The injected configuration data consists of the following data:

• URI and credentials (Client ID and secret) of the EFPF Security Portal

• URI of the EFPF Service Registry

• Credentials to the ZDMP Marketplace (Client ID, username and password)

2.1.4 Execution and Usage

The following sections will provide basic information about the execution and usage of both
components of the Integrated Marketplace Framework.

 EFPF Marketplace UI

By default, the EFPF Marketplace UI will list all available items sorted by the name attribute.
Additionally, the user can sort the products based on the item category, which is provided
by the source marketplace. The user has also the option to negate the sorting.

The user can also use the provided filters, which allows to filter the list based on the source
marketplaces and the categories. Both filters can be reset to their default values.

Each item provides basic information, which are the name, categories, item image and an
external link, which leads the user to the detail page of the source marketplace.

 EFPF Marketplace Backend

The EFPF Marketplace Backend is being used only by the EFPF Marketplace UI
component, which can be deployed independent of the EFPF Marketplace Backend. The
EFPF Marketplace Backend provides one API endpoint for retrieving products. Detailed
information are provided via Swagger6.

2.1.5 Limitations and Further Development

The integration of a new external marketplace requires manual adaptations of both
components (EFPF Marketplace UI and Backend). Future developments could adapt the
EFPF Marketplace UI in a way, that it could handle products from a new external
marketplace without adaptations.

6 https://efpf.smecluster.com/marketplace-backend/api/

http://www.efpf.org/
https://efpf.smecluster.com/marketplace-backend/api/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 32 / LIX

2.2 Automated Agent-based Marketplace and Online Bidding

2.2.1 Scope and Relationship with Other EFPF Components

Besides the overall marketplace framework of the project, an agent-based marketplace will
be also available to users. This type of marketplace aims to provide mechanisms that enable
the automated negotiations within the participants. In this marketplace, each company sets
up an agent which represents the company in an Online Bidding Process (OBP) in which
the agents negotiate for specific goods and services. This provides automation and time
costs reduction of traditional manual procedures in negotiation processes carried out by
companies mutually connected by a production and service supply chain. Moreover, OBP
facilitates and promotes a more efficient circular economy by enabling marketplaces where
provider companies may offer production waste materials as by-product for possible buyer
companies, following an industrial symbiosis paradigm.

The Online Bidding Process component is composed of three main components:

• Agent ecosystem

• Matchmaker

• User Interface

The platform is derived from the COMPOSITION project and has been refactored in EFPF
and integrated within the its ecosystem to provide automated bidding process functionalities
to EFPF users. This is done to propose a faster way to manage supply/demand matching to
speed up the process of reaching agreement between two parties.

The Agent ecosystem is composed by a set of agents built to communicate with each other
and with other platform’s components to perform an automated negotiation. To achieve this
the Agents implement a standard communication protocol based on FIPA ACL7 and AMQP8
to implement an asynchronous publish and subscribe communication approach. The OBP
Agents are categorized by the role which they take within the OBP ecosystem:

• Requester: Represents a company who requests for a service or/and a related good.

• Supplier: Represents a company who provides a service.

The Matchmaker component provides a full semantic framework for the agents with CRUD
operations for agents/companies and two type of matchmaking functionalities. It matches
requesters with suppliers for a service/good and in a second level matches the request with
the best available offer (coming from supplier agents’ bids) based on different evaluation
criteria such as price, payment and delivery methods, reliability etc.

The UI of the bidding process is web-based and enables a user to carry out the following
functions:

• Register/set up and agent

• Initialize a bidding process in order to request for a service/good (requester)

• Add information and priorities for the request (requester)

• Online monitoring of the process for both suppliers and requester

• Opportunity for supplier to bid for a request

7 http://www.fipa.org/repository/aclspecs.html
8 https://www.amqp.org/

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 33 / LIX

• Suggestion for best offer and details of all submitted offers in the case the user want
to ignore system suggestion and evaluate by himself (requester)

• Visual notification for win/lose in bidding process (supplier)

• Bids history available to user (requester)

The system is made available to the user through the EFPF portal where an authenticated
user is able to log in and access the OBP, like represented in Error! Reference source not
found., as well as configure and set up an agent and to control the bidding processes by
the means of UI, according to the schema in Error! Reference source not found..

Figure 10 Online Bidding Process Platform Login

Figure 11 Online Bidding Process – Set Default Offer

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 34 / LIX

2.2.2 Requirements and Realisation

Design Requirements

The Online Bidding Process is a stand-alone component that is made by a network of
automated and semi-automated software agents representing companies enabled to
perform automated negotiation following predefined protocols and logics. The platform
coming from the COMPOSITION project expects that each agent should be manually built
and deployed together with an ad-hoc designed UI for each company taking into account
the needs and the use cases. The EFPF platform has a wider scope with respect to the
COMPOSITION project from which this tool derives from.

To overcome these issues and to integrate the solution with EFPF platform, new
components have been developed (see Error! Reference source not found.Error!
Reference source not found.):

• the Bidding Proxy (a.k.a. Agent Deployer) and its API;

• the Agent Management System (AMS);

• a new User Interface (UI);

• extensions of matchmaking functionalities.

Figure 12 Online Bidding Process architecture

The Bidding Proxy is the main access point of the whole OBP. It is responsible for the
creation, deployment and management of the Agent, as shown in Error! Reference source
not found.. Whenever a new request for an Agent creation is issued by the user, the Bidding
Proxy instantiate and configure a new Agent by generating a new docker container which

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 35 / LIX

embeds the software implementing generic Requester or Supplier Agents. The Bidding
Proxy contacts, through a secure SSH connection, the machine where the Agent needs to
be deployed (it might be the same machine where the Bidding Proxy is running or a remote
one), providing the relevant configuration parameters generated by the AMS.

The AMS handles the registration of the Agents ID and relevant properties on a Postgre
database, and gives also the possibility to register the Agents and their transactions
(including smart contracts) on a blockchain. Even if an Agent is deleted, its historical
transactions are kept on the DB/blockchain and the relevant information can be gathered by
the users by querying the provided REST API of the Bidding Proxy.

The OBP provides an interface of more than 120 REST API to enable the user to create,
destroy and configure new Agents, define the ranking of the offers, get the list of Agents,
the list of Agents per user, gather the historical transactions, etc.

ReDoc pages describing API are available after the components deploy on the path:
https://ip:port/{nginx-link}/api/v1/docs

Postman API are available at:

 https://documenter.getpostman.com/view/8641456/UyrDEG6L

Figure 13 Agent deployment workflow

The API is used by the new OBP UI, which has been developed within EFPF as a web form
that enables users to create their own agents, enabling a more generic but flexible approach
to Agent creation. The new UI allows the dynamic rendering of the views from the semantic

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 36 / LIX

framework rather than being designed explicitly for two or three partners only. The general
design approach for EFPF was to move from a custom solution to a more generic one in
order to satisfy user requirements.

For the Matchmaker side that provides CRUD operations to agents, new web services have
been developed to meet the Bidding Proxy and UI needs.

Figure 14: Agent Marketplace - Deploying Process

For the Matchmaker side that provides CRUD operations to agents, new web services have
been developed to meet the Agent Deployer and UI needs.

In addition to the components that have been designed for EFPF needs, developments to
existing modules have been applied or scheduled for future developments. All the updates
to both front end UI and back end services are driven by the need for generic services
throughout the platform.

User Requirements

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 37 / LIX

Besides the requirements that have been extracted by the project design approach, the
agent-based bidding process is a core component for Circular Economy pilot of the project.

Figure 15: Agent Marketplace - Process

In this pilot there is the major requirement for the users to be able to negotiate automatically
for some goods/services in this closed loop. The pilot partner that manufactures lifts wants
to negotiate its scraps automatically through by using its agent and the bidding process. The
waste management company that wins on bidding process wants to sell the processed
waste to a bio-energy company by using the same system as well. Finally, the produced
energy by the scraps returns to lift manufacturer in this circular scenario.

Therefore, a Purchasing manager or purchasing specialist wants to negotiate prices and
contracts so to obtain high-quality services/products at reasonable prices in an automatic
way. This need led to design this automated online bidding mechanism that provides
suggestions of best available supplier for a service and enables the automation of
negotiation procedures in a close loop. More detailed pilot requirements are available on the
corresponding deliverable.

2.2.3 Deployment

The Online Bidding Process infrastructure can be deployed from scratch following the
instructions below.

On a clean & updated VM:

Install docker & base libraries & tools

sudo -S apt-get update

sudo -S apt-get install nginx, openssh-server

sudo -S apt-get install apt-transport-https ca-certificates curl software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | echo ${sudo_password} | sudo -
S apt-key add –

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 38 / LIX

sudo -S add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo -S apt-get update

sudo -S apt-get install docker-ce

Enable docker usage without root credentials

sudo -S usermod -aG docker ${user_name}

su - ${USER}

Define and deploy a docker network and its static IP (and ports) for the main
components:

Create the bridged docker network:

docker network create \

--driver=bridge \

--subnet=172.23.0.0/24 \

--ip-range=172.23.0.0/24 \

--gateway=172.23.0.1 \

mas_docker_network \

Network plan example:

network Gateway=172.23.0.1

rabbitMQ=172.23.0.2:5672 (default)

Keycloak=efpf.polito.it:42003 (nginx)

AMS PostgreSQL storage=172.23.0.3:5432 (default)

AMS=172.23.0.4:5587 (synched among .env files of bidding-proxy & AMS)

bidding-proxy=172.23.0.5:45000 (synched only in .env files of bidding-proxy)

The nginx rules will forward external requests to the bidding proxy at the configured
public_ip+port (e.g. efpf.polito.it:45002)

Then, define and activate the nginx-rules and configuration folders enabled for the MAS (+
user-rules)

Build ssl certificates for the host machine

PASSPHRASE=$(head -c 500 /dev/urandom | tr -dc a-z0-9A-Z | head -c 128; echo)

echo ${PASSPHRASE} > /home/test/EFPF/global.pass

openssl req -x509 -newkey rsa:4096 -keyout /home/test/EFPF/key.pem -out
/home/test/EFPF/cert.pem -passin env:${PASSPHRASE} -sha256 -days 365

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 39 / LIX

Write the nginx rule to:

enable communication with the Agent Deployer

create and link a folder for the future agents configuration (include sys-path)

add the sudoers role to let the base user to reload nginx rules

reload rules

Example of nginx rule (/etc/nginx/sites-available/efpf-docker.conf)

-> soft linked in (/etc/nginx/sites-enabled/efpf-docker.conf):

server {

listen 45002 ssl;

listen [::]:45002 ssl;

server_name 127.0.0.1;

ssl_password_file /home/test/EFPF/global.pass; \

ssl_certificate /home/test/EFPF/cert.pem;

ssl_certificate_key /home/test/EFPF/key.pem;

location /efpf_docker/ {

include proxy_params;

proxy_pass http://172.23.0.5:45000/;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Host $host;

proxy_set_header X-Forwarded-Proto $scheme;

}

include /home/test/EFPF/configs/*.conf;

}

Example of sudoers permission file, if user_name=test -> (/etc/sudoers.d/test):

test ALL=(ALL) NOPASSWD: /usr/sbin/nginx -s reload

sudo -S nginx -s reload

Deploy a postgreSQL database for AMS

Inject settings in docker run & set values in AMS .env file

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 40 / LIX

docker run -d --restart always --net=mas_docker_network --ip=172.23.0.3 --name
db_agent_ams -e POSTGRES_USER=agent_ams -e
POSTGRES_PASSWORD=ams_password -e PGDATA=/var/lib/postgresql/data/pgdata -v
db_agent_ams_data:/var/lib/postgresql/data postgres

Deploy rabbitMQ

Inject settings in docker run & set values in AMS .env file

[port mapping is not required since communications are internal -> only for debug]

docker run -d --restart always --net=mas_docker_network --ip=172.23.0.2 --name
rabbit_broker -p 5672:5672 -p 15672:15672 rabbitmq:3-management

AMQP Communication models: https://www.rabbitmq.com/tutorials/amqp-concepts.html

RabbitMQ settings:

Base user & password are: guest guest

Default Virtual host is /

Default Exchanges are:

fanoutexchange

directexchange

If you want to increase the security of the solution

(OPTIONAL, otherwise rely on guest user but avoid port mapping for platform-external
requests):

Create a dedicated user to interact with rabbitMQ

rabbitmqctl add_user username password

(Only for administrators):

rabbitmqctl set_user_tags username administrator

Set permissions

rabbitmqctl set_permissions -p / username "." "." ".*"

Delete Default user?

rabbitmqctl delete_user guest

If you want to further increase the security of the solution add the user-agent-dedicated
credentials within the registration phase performed by the AMS during the deploy.

IF the exchanges defined in .envs are not the default ones -> create them via UI interface
(172.23.0.2:15672)

If you need to delete lot of queues / exchanges you need to define (and then remove) an
expiration policy:

Get in the UI and login -> Admin (Up-Menu) -> Policies (Right-Menu):

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 41 / LIX

Name: Expire_all_policy

Pattern: .*

Definition: expires = 1 [Number in drop-down Menu]

Wait for a couple of seconds and remove the policy -> all the data has been erased

Deploy Keycloak or exploit a remote running instance

Readme at: https://www.keycloak.org/getting-started/getting-started-docker

Define the nginx rules to have access on it or integrate certs for direct access

Via UI (e.g.: https://130.192.85.226:42003/auth/admin/master/console):

Define at least 1 client (confidential) & 2 users in Keycloak (user-agent-base & proxy-user)
+ debug user agents

If access is granted by the same instance of Keycloak used for the platform-internal
communications:

then create a public client and the users of interests + their password credentials

(then collect & set these values in AMS and bidding-proxy .env file)

Download, Build & Deploy AMS

git pull https://git.pertforge.ismb.it/efpf/agent-ams.git

Add fully configured .env file & run (it will create the db & the tables)

docker build . -t agent_ams

Port mapping is required only if you want to interact with it for debug

if you want to deploy bidding_proxy & AMS in different machines you will need dedicated
nginx rules for it \

docker run -d --restart always --net=mas_docker_network --ip=172.23.0.4 --name
agent_ams agent_ams

Get inside the AMS DB docker:

docker exec -it db_agent_ams bash

Get inside the DB:

psql postgres -U agent_ams

and connect:

\c ams_storage

Insert in AMS postgreSQL database static network-settings in net_info

insert into net_info values('gateway','Docker','172.23.0.1','');

insert into net_info values('rabbitMQ','MAS','172.23.0.2','');

insert into net_info values('db_agent_ams','MAS','172.23.0.3','');

insert into net_info values('ams','MAS','172.23.0.4','');

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 42 / LIX

insert into net_info values('bidding_proxy','MAS','172.23.0.5','');

These are useful for debug & for the quick and dirt ip selection function performed during
the registration phase

required to assign static free IP and consequently to dynamically build the nginx rules to
access directly the agent!

Download & Build the agent-requester (docker images)

(Environment file will be produced by the bidding-proxy at run-time and automatically
injected)

git pull https://git.pertforge.ismb.it/efpf/agent-requester.git

docker build . -t agent_req

Download & Build the agent-supplier (docker images)

(Environment file will be produced by the bidding-proxy at run-time and automatically
injected) \

git pull https://git.pertforge.ismb.it/efpf/agent-supplier.git

docker build . -t agent_sup

Download, Build & Deploy bidding-Proxy (with fully configured .env file)

git pull https://git.pertforge.ismb.it/efpf/bidding-proxy.git

docker build . -t bidding_proxy

docker run -d --restart always --net=mas_docker_network --ip=172.23.0.5 --name
bidding_proxy bidding_proxy

if ufw active, enable the bidding-proxy port, & the keycloak port (if hosted and configured
here)

sudo ufw status

sudo ufw allow 45002

Get a Keycloak Token via Postman and start interacting with the bidding-proxy and the
components behind.

The build process deploys aside each agent a postgres_db. To manually access it for debug:

docker exec -it db_{agent_id} bash

Get inside the DB:

psql postgres -U agent_requester

or

psql postgres -U agent_supplier

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 43 / LIX

and connect (exploit autofill via tab):

\c "{agent_id}"

Finally, if you prefer a GUI to monitor the docker containers, install portainer:

docker run -d -p 8000:8000 -p 9443:9443 --name portainer \

--restart=always \

-v /var/run/docker.sock:/var/run/docker.sock \

-v portainer_data:/data \

portainer/portainer-ce:2.9.3

2.2.4 Execution and Usage

The features provided by this tool are available through the User Interface integrated into
the EFPF portal. The basic UI that has been implemented in Angular 9 by keeping the design
direction adopted by COMPOSITION and CNET. However, all the static attributes replaced
with dynamic ones that enable the interfaces usage by different partners. The UIs are
available to the EFPF user are:

• A registration form

Figure 16: Agent Marketplace - Agent Registration Form

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 44 / LIX

By using this form, a company register its information to the semantic framework that
consists the knowledge base of the agent ecosystem. After that, the agent for this
company is automatically created. This agent can be used to represent the company
in online bidding processes for specific services and goods.

• Bidding Process Management Dashboard

Figure 17: Agent Marketplace - Bidding Process Management Dashboard

In this interface, the user can explore details about previous bidding process that are
closed (bidding history) or watch the bidding processes that are active right now. In
this interface, the user can select the button ‘Create Bid’ in order to initialize a new
online bidding process. Furthermore, the status bar for each bidding process is
automatically updated during the process. The states are: Initialize -> Supplier
selection -> Pick-up arrangement

• Initialize/create new bidding process

Figure 18: Agent Marketplace -Bidding Settings Popup I

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 45 / LIX

In this menu the user can select a requested service, the corresponding good, to add
the quantity and the unit of measurement, to set the priorities for his request and
finally to start the bidding process. Next figures depict the available options for
services, goods and supported priorities by the matchmaking/evaluation engine:

Figure 19: Agent Marketplace - Bidding Settings Popup II

Figure 20: Agent Marketplace - Bidding Settings Popup III

Furthermore, a user is able to explore offer details or create pre-defined bids that enable the
fully automation of the process from suppliers’ side.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 46 / LIX

Figure 21: Agent Marketplace – Setup Default Bid

The Matchmaker component is available as an API. The component is an application for
automated online bidding through agent-level and offer-level matchmaking. It is an Ontology
based framework which applies semantic rules and SPARQL queries to the dedicated
Ontology for requesters and suppliers straightforward matching and implements weighted
criteria assessment for offer evaluation and best offer suggestion. The Matchmaker is
connected with the Marketplace agents and stakeholders through RESTful web services
and HTTP protocol.

Figure 22: Agent Marketplace - Information Flow

More details about Matchmaker component are available on D5.3: Matchmaking and
Intelligence Gathering.

The Agent Deployer provides a REST endpoint to be used by the UI in order to provide the
customisation agent and deploying service. The actual endpoint implementation is
described in Annex C: Data Models and Interfaces. The data model used by the API has

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 47 / LIX

been designed according to the needs of the integration process. It is composed by two
main sections: one dedicated to new agent configuration and one to the matchmaker input
data.

2.2.5 Major Updates from M18

Further research and development were conducted related to agent framework,
matchmaking, and overall bidding process. Especially the agents’ back-end part was fully
updated in order to support the automated creation of agents by end-users.

New interfaces for exploring offers history and bidding delays were designed and developed
alongside with interfaces (and back-end services) for setting up default offers/bids.

The agent communication mechanism was aligned with Data Spine integration needs. Same
for UIs and matchmaking component. A lot of integration rounds among agents,
matchmaking back-end and UIs have taken place until the final delivery.

2.3 Accountancy Service

2.3.1 Scope and Relationship with Other EFPF Components

The Accountancy Service has been developed within the project as an integral part of the
EFPF Marketplace Framework and provides insight into users’ interactions with the EFPF
Platform as well as its connected marketplaces. This includes transactions that EFPF users
make on different marketplaces, which are linked with the EFPF Marketplace Framework.

A taxonomy has been setup to identify the trackable user actions in which action items are
listed in ‘subject, verb, object’ manner and these actions include users’ basic interactions
with various parts of the EFPF Platform such as login, register, inviting other users as well
as payments realized on external marketplaces if the user has initiated his/her journey from
EFPF Marketplace. In this way, when a user performs a certain action on either EFPF Portal
or a connected marketplace, corresponding information is sent to Accountancy Service to
be persisted so that it can later be visualized to extract valuable information.

The Accountancy Service has been developed based on Elastic Stack which comprises the
following components:

• Elasticsearch: Stores, indexes, provides, and manages user logs to be later analysed.
Since relational databases are not well-suited for managing log data, a NoSQL
database like Elasticsearch is preferred due to their flexible and schema-free
document structures, enabling analytics of the log data.

• Logstash: Gathers user behaviour data from various components of the EFPF
platform, executes different transformations and filters the content, before sending the
data to the Elasticsearch component

• Kibana: Enables interactive dashboards, filters and advanced data analysis and
exploration of user logs.

In addition, the following custom modules listed below were developed to provide
additional functionality:

• Reporting Component: Creates periodic (i.e. monthly) reports for each dashboard at
the end of each month in PDF format and sends it as an email

• Invoicing Component: Processes all the payment data accumulated within each
month, sums all the amounts from successful transactions realized on each

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 48 / LIX

marketplace, calculates a corresponding cashback amount, and creates a detailed
invoice with the information including purchased products, dates of transactions as well
as the calculated commission for each product. The invoice will then be used to charge
marketplaces.

2.3.2 Requirements and Realisation

Tracking the user behaviour enables businesses to make productive decisions and develop
effective business strategies. This is a valuable feature of a federated digital platforms, and
the Accountancy Service provides this to support the long-term sustainability of the EFPF
platform, beyond the span of the project. The Accountancy Service also aims to track and
trace a user’s journey across the EFPF ecosystem and collect data about the transactions
they make on different marketplaces. The collected data logs are then used to carry out a
cashback mechanism enabling a commission charge or a referral fee to be made to the
marketplace where a EFPF user carries out a business transaction (Figure 23). In addition
to the log collection, customizable dashboards are also needed for better and easier tracking
of user interactions. Therefore, in order to process the accumulated log data and address
all the above requirements, the Accountancy Service uses Elastic Stack (Elasticsearch,
Logstash, Kibana) as an advanced log persistence, monitoring, processing, and
visualization framework.

Figure 23: Accountancy Service - Cashback Process

2.3.3 Deployment

Accountancy Service is a standalone component that runs independently of existing EFPF
tools and services and can be integrated with unlimited number of external marketplaces.
Each of the 5 components of the Accountancy Service has its own Docker image and runs
on a corresponding Docker container. Moreover, a production-ready configuration allowing
Elasticsearch running on a multi-node cluster is also available. Currently, all the components
of the Accountancy Service run on a production server hosted by C2K and a test server
hosted by SRDC.

2.3.4 Execution and Usage

Accountancy Service uses Logstash as a data ingestion and server-side data processing
pipeline. The logs sent to Logstash are forwarded to Elasticsearch for persistence after

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 49 / LIX

executing certain ingestion pipelines; and then Kibana dashboards are automatically
updated based on the certain fields stored on Elasticsearch. In other words, Accountancy
Service uses a basic data model for visualization and logs must conform to a basic data
model so that Kibana dashboards can be updated automatically

Currently, there is a running instance of Logstash component that is registered to the EFPF
Service Registry, which is publicly available through a public endpoint so that events from
EFPF Portal and external marketplaces can be sent using HTTP POST method. Events are
modelled as a JSON message related with the action conforming to the data model. This
will be enough for the Accountancy Service to capture the data and update the dashboards.

Accountancy Service uses Kibana to visualize the data ingested through Logstash and
persisted on Elasticsearch. Kibana provides mechanisms to create interactive dashboards
with filtering as well as advanced data analysis capabilities and Accountancy Service
provides 4 different dashboards for log visualization. Furthermore, all these dashboards can
either be accessed on the Kibana instance hosted on EFPF production environment and
EFPF Portal Admin pages. Details of the 4 dashboards can be seen below:

• Payments Dashboard: Displays all payments realized on marketplaces as well as the
corresponding cashback (commission) amounts calculated for each transaction
(Figure 24).

• Marketplace Usage Dashboard: Visualizes marketplaces usages in terms of most
frequently used search keywords, queried platforms, and their distribution (Figure
25Error! Reference source not found.).

• Platform Engagement Dashboard: Displays base platform visits and tool/service
usages and tracks the frequency of these usages (Figure 26).

• User Activities: Visualizes user actions such as login and register (Figure 27).

In addition to the central functionalities offered by the Elastic Stack, Accountancy Service
also provides extra features such as preparing monthly reports based on the accumulated
data and generate invoices in accordance with the commissions calculated for successful
transactions that users perform on the external marketplaces connected to the EFPF
Platform. Since these functionalities require custom implementations, these add-on modules
are written in JavaScript and provided as a Docker image. At the end of each month, both
modules process relevant data of the target month and generates 2 PDF documents: One
for the monthly report including all charts updated for the target month and one for the
invoice document containing all the transaction details (e.g. purchased products, their
prices, transaction dates, calculated commission, etc.) to charge each external marketplace.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 50 / LIX

Figure 24: Accountancy Service - Payments Dashboard

Figure 25. Accountancy Service Marketplace Usage Dashboard

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 51 / LIX

Figure 26: Accountancy Service - Platform Engagement Dashboard

Figure 27: Accountancy Service - User Activities Dashboard

2.3.5 Limitations and Further Development

Currently, there are no limitations regarding the Accountancy service development and
previously identified limitations were resolved. New marketplaces can be integrated, and
new dashboards will be created upon request to track different types of user interactions.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 52 / LIX

3 EFPF Portal

The EFPF Portal component is the unification point of distributed tools and platforms in the
EFPF ecosystem. It allows the user to access connected tools, base platforms,
marketplaces, experiments, and pilots through a unified interface.

3.1 Current Status

This section provides an account of the current status of EFPF Portal and will describe a
typical EFPF user journey.

Figure 28: EFPF Portal - Landing Page

The first page a user will open is th e landing page of the EFPF Portal, which can be
accessed by this link9. The landing page provides the EFPF Marketplace UI, which allows
the user to browse through available products provided by connected marketplaces.
Additionally, users can login with an existing EFPF account or create a new EFPF account
by registering themselves to the EFPF Portal. The landing page also provides the user with
a link to the Terms and Conditions, so that they can read through them and ensure that it
aligns with their expectations before joining. The rest of the user journey is explained through
separate sections below.

9 https://portal.efpf.org

http://www.efpf.org/
https://portal.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 53 / LIX

3.1.1 User Registration

First time visitors can click on ‘Register’ button to sign up to the platform. Upon clicking on
Register, a simple and quick registration form appears on the screen as shown in Figure 29.

Figure 29: EFPF Portal - Registration Form

The registration form asks for typical personal information. Once the user provided the
required information and clicked on “Create Account”, a user account has been set up and
a welcome email will be sent to the new user providing general information about the EFPF
Portal and the next steps. A new account requires a manual review by default, where an
EFPF admin checks the details of the account first. If the account is valid, the admin enables
it and the user can continue to set up the account by verifying the email address.

3.1.2 Login

A registered user can click on ‘Login’ button on the landing page. The user is then redirected
to the login screen (Figure 30) where they can enter their credentials and will be forwarded
to the dashboard of the EFPF Portal.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 54 / LIX

Figure 30: EFPF Portal - Login Screen

3.1.3 Company Registration

The EFPF Portal provides a company management feature, which can be used in the future
for managing access to different tools and services of the EFPF platform. Currently this
feature allows the following use cases:

- Create, edit and delete companies

- Join, remove and change roles of company members

- Manage companies for EFPF platform admins

The user can create or join an existing company via the company registration dialog (see
Error! Reference source not found.) which will be automatically shown upon first login of
the EFPF Portal.

Figure 31 EFPF Portal - Company Registration - Company Selection

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 55 / LIX

If the user’s company is not available, it can be registered by selecting “Register new
company” and providing the required information shown in Figure 32.

Figure 32: EFPF Portal - Company Registration - Register New Company

After the registration has been completed, the user can start using the EFPF Portal. In the
meantime, an EFPF admin will review the provided company details. Once accepted, the
user can enter the company management view via the “Manage company” menu entry as
seen in Figure 33.

Figure 33: EFPF Portal - Company Registration - Manage Company Menu Entry

The company owner can edit the company details, enable the listing of the company in the
company registration dialog (see Error! Reference source not found.) and manage
members including roles.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 56 / LIX

Figure 34: EFPF Portal - Company Registration - Manage Company

As a EFPF admin it is possible to manage all companies including activation, deactivation
and deleting (see Figure 35).

Figure 35: EFPF Portal - Company Registration - Manage Companies

3.1.4 Dashboard

After login, the dashboard is the default website being shown. The dashboard has been
designed with a view to showcase the breadth of capabilities available on the platform. The
messaging has been adapted to bring out customer benefits, so that they can understand
the application and usefulness instantly.

A direct link to access the marketplace is provided for those specifically looking to explore
the digital marketplace.

Further an array of tiles each pointing to a different value propositions (see Section 0)
available on the platform can be seen in the centre of the dashboard. The aim is to provide
the user ease of navigation by bundling supplementary tools and services based on their
application. Figure 36 shows the overall layout of the dashboard.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 57 / LIX

Figure 36: EFPF Portal - Dashboard

The side menu provides the general navigation for the EFPF Portal, which can be used at
any moment while on the platform. Finally, at the bottom of the dashboard page 5 key links
are provided, the use and application of which are described below:

• Contact Us: Intended to provide users with contact details of the governing body (in
this case, European Factory Foundation) including contactable email, phone number
and other relevant details.

• Find a Partner: This links the user to the company matchmaking search, where users
filter and search for companies based on multiple attributes like sectors and business
types.

• Support: This link will be forwarding the user to a support page, which enables users
and developers to get in contact with the platform support team.

• EFPF Ecosystem: This links the user to European Factory Foundation website. This
website can also be reached by following this link - http://ef-foundation.com/ .

• Public Portal: This links the user to the public website for the EFPF project. This
website can also be reached by following this link - https://www.efpf.org/ . The project
website aims to disseminate project’s efforts through regular updates on the technical
progress, shows attended and constant blog posts.

3.1.5 Value Propositions

In order to describe the unique value propositions (VP) that the platform can deliver for the
user, the dashboard will provide hyperlinks to VP pages to provide detail. The VP page also
presents actual solutions to bring out the range of possibilities. This VP has been designed
and refined to provide detailed information about the possibilities of the platform to attract
users and create engagement. Following this, individual VP’s were created and organised

http://www.efpf.org/
http://ef-foundation.com/
https://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 58 / LIX

in a simple to understand fashion in the portal. Initially the VP explains overall ambition of
the solution in a few lines. It is then followed by a concise description of the key benefits as
well as real life implementation by pilot partners and their experience.

Figure 37: EFPF Portal - Value Proposition Page Example

3.1.6 Federated Search

The federated search component, which has been developed and provided by T4.5 -
Matchmaking and Agile Networks Creation, offers the user t three different types of
searches:

• Products (See Figure 38)

• Companies (See Figure 39)

• Business Opportunities (See Error! Reference source not found.)

More information regarding this component can be found in deliverable D5.1: EFPF
Matchmaking and Intelligence Gathering.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 59 / LIX

Figure 38: EFPF Portal - Federated Search – Products/Services

Figure 39: EFPF Portal - Federated Search – Company/Partners

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 60 / LIX

Figure 40 EFPF Portal – Federated Search – Business Opportunities

3.2 Scope and Relationship with Other Components

The EFPF Portal component provides the main user interface of the EFPF platform. It is
being connected to other components in the EFPF platform. The following list provides an
overview of the relationship regarding connected components and a description of the
functionality it enables:

• EFPF Security Portal: This component secures access and communication of the
EFPF portal.

• Smart contracting component: This component is being used at user registration
time and enables the storage of registration information, i.e. does the user agreed to
the EFPF Terms and Condition.

• Accountancy Service: This component is being used to manage track user events
like visiting an external platform or conducting a product search.

• External mail service: The EFPF Portal Backend requires an external mail service to
send out notification or confirmation emails, i.e. when a user registered successfully a
welcome email will be sent out with the next steps.

•

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 61 / LIX

Figure 41: EFPF Portal - Architecture Diagram

3.3 Requirements and Realisation

The EFPF Portal component is divided in two components. The first component is the EFPF
Portal, which is a single-page application (SPA) based on the Angular web application
framework10. The second component is the EFPF Portal Backend, which is responsible for
providing the required data for the frontend. It handles also different tasks like registration
and event logging.

Both components are provided as Docker images, which enables a fast and uncomplicated
way to deploy them. It is recommended to use the Linux distribution Ubuntu 22.04 LTS as
the operating system with Docker Engine v20.10 installed. Any other operating system can
be used too, but it cannot be guaranteed that it will work successfully with the Docker
version.

3.4 Deployment in the EFPF Platform (Installation)

This section will provide information on how the EFPF Portal components can be deployed.

Both components (EFPF Portal and EFPF Portal Backend) are provided as Docker images
build by the CI/CD feature of GitLab11. GitLab stores Docker images in an integrated Docker

10 https://angular.io/
11 https://about.gitlab.com/

http://www.efpf.org/
https://angular.io/
https://about.gitlab.com/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 62 / LIX

container registry, to which a Docker Engine can connect and retrieve the required Docker
images. As the Docker registry is not public, the Docker Engine installation first must be
connected to the Docker registry. This can be done by the Docker login12 command.

$ docker login --username foo --password-stdin registry:8080

As the server environment may use Portainer13 for Docker container management, a
connection to the GitLab registry does not require a manual login but will be able through UI
configuration.

There are currently two environments in use: The “Test” and the “Prod” environment. In
order to deploy the components in any of the environments, a repository with scripts have
been set up, which are being maintained by their respective component owners. Therefore,
the deployment has no need for command line interaction but is being done via the GitLab
CI/CD UI and pipelines.

3.5 Execution and Usage

Both components will be available after the deployment. The documentation of the EFPF
Portal Backend REST API is provided by Swagger14 and provides information to developer
how the EFPF Portal is communicating with its backend component.

The EFPF Portal can be accessed via browser (see Section 3.1 for more information). After
a successful login, the user will be forwarded to the Dashboard and can use the provided
tools and services of the portal.

3.6 Limitations and Further Developments

The following limitations for the EFPF Portal exist:

• User registration process requires manual actions

12 https://docs.docker.com/engine/reference/commandline/login/
13 https://www.portainer.io/
14 https://swagger.io/

http://www.efpf.org/
https://docs.docker.com/engine/reference/commandline/login/
https://www.portainer.io/
https://swagger.io/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 63 / LIX

4 Conclusion and Outlook

In this final report, the following items have been presented: the implementation of the
requirements established in M18 to establish a federated ecosystem and its evolution and
extension; the required governance leading for a growth of such an ecosystem; and the
current state of the design and realisation of the EFPF Marketplace and the EFPF Portal.

The EFPF Portal provides a unified interface for the user to access all the tools and services
provided by the EFPF ecosystem. Within the portal integrates the EFPF Marketplace
providing access to multiple third-party marketplaces in a onestop-shop approach. EFPF
Marketplace is free to access and provides advanced federated search functionality to
facilitate the lookup for apps, tools, products, software as well as consultancy services,
hosted or offered by multiple Marketplaces and platforms.

The Accountancy Service provides interactive dashboards to visualize collected information
and allows you to pull insights out of user behaviour and transaction data. The interactive
dashboards provide advanced filtering and data analysis mechanisms to help you to reach
specific information in a faster way. In addition, the Accountancy Service also offers
automated tools for preparing monthly reports based on the accumulated data and
generating monthly invoices in accordance with the commissions calculated for successful
transactions that users perform on the marketplaces connected to the EFPF Platform.

http://www.efpf.org/

 European Connected Factory Platform for Agile Manufacturing – www.efpf.org

D5.16: EFPF Interfacing, Evolution and Extension - Vs: 1.0 - Public 64 / LIX

Annex A: History

Annex B: References

http://www.efpf.org/

