

European Connected Factory Platform
for Agile Manufacturing

WP6: Integration and Deployment

D6.2: Integration and Deployment – Final Report

Vs: 1.0

Deliverable Lead and Editor: Mathias Axling, CNET

Date: 2022-06-30

Dissemination: Public

Status: <Draft ¦ Consortium Approved ¦ EU Approved>

Grant Agreement:
825075

Short Abstract

The deliverable describes the development, integration and deployment
architecture of the EFPF Ecosystem and the relevant components of
the EFPF Platform. It describes methods and procedures for
development, test, integration and deployment of the EFPF Ecosystem.
The development, test and deployment environments used for the pilots
and open calls are also described in this report.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public II / VI

Document Status

Deliverable
Lead

Mathias Axling, CNET

Internal
Reviewer 1

Usman Wajid, ICE

Internal
Reviewer 2

Wernher Behrendt, SRFG

Type

Deliverable

Work
Package

WP6: Integration and Deployment

ID

D6.2: Integration and Deployment – Final report

Due Date

2022-06-30

Delivery Date

2022-06-30

Status

<Draft ¦ Consortium Approved ¦ EU Approved>

History

See Annexe A.

Status

This deliverable is subject to final acceptance by the European Commission.

Further Information

www.efpf.org

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided "as is", and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its
sole risk and liability.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public III / VI

Project Partners:

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public IV / VI

Executive Summary

This deliverable presents the final version of the development and deployment architecture
of the EFPF ecosystem, which supports the integration of the four base platforms from the
H2020 FoF-11-2016 cluster, namely NIMBLE, COMPOSITION, DIGICOR, and vf-OS. The
owners of these base platforms have provided the support for the platforms’ integration in
EFPF. The main focus of this deliverable is on the status of integrations and deployments
in EFPF during the final year of the project duration, including the integration and
deployment pipeline and architecture.

The design decisions and implementation for the target development and deployment
architecture are presented in their final form. The development and deployment platform
has been successfully applied in pilots and open call experiments. The content in this
deliverable will be used to inform future users and contributors about the relevant
integration facts and methods for the EFPF ecosystem.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public V / VI

Table of Contents

0 Introduction .. 1

0.1 EFPF Project Overview .. 1

0.2 Deliverable Purpose and Scope ... 1

0.3 Target Audience .. 1

0.4 Deliverable Context ... 2

0.5 Document Structure .. 2

0.6 Document Status .. 3

0.7 Document Dependencies .. 3

0.8 Glossary and Abbreviations ... 3

0.9 External Annexes and Supporting Documents ... 3

0.10 Reading Notes ... 3

1 EFPF Integration and Deployment Update .. 4

1.1 EFPF Architecture Context View .. 4

1.2 EFPF Integration and Deployment ... 6

1.3 Viewpoints .. 7

1.3.1 Development View .. 7

1.3.2 Deployment View .. 8

1.4 Concerns... 9

2 Development Viewpoint ... 11

2.1 Overview ... 11

2.2 Code Organization .. 11

2.2.1 Module Organization .. 11

2.2.2 Code Repository ... 12

2.3 Deployment Pipeline ... 14

2.4 Validation and Testing .. 23

2.4.1 Integration Testing .. 23

2.4.2 Performance Testing .. 28

2.5 Policies and Guidelines .. 31

3 Deployment Viewpoint ... 32

3.1 Overview ... 32

3.2 Runtime platform ... 32

3.2.1 Environments ... 32

3.2.2 Container Technology, Orchestration and Management 38

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public VI / VI

3.3 Dependencies .. 40

4 After EFPF: Recommendations for EFF and Further Work ... 42

4.1 Recommendations and Lessons Learned ... 42

4.2 Technical Meeting Outcomes .. 43

5 Conclusion and Outlook .. 45

Annex A: Document History .. 46

Annex B: References .. 47

Annex C: Development Viewpoint Table ... 48

Annex D: Deployment Viewpoint Table ... 56

Annex E: Dependency Table ... 58

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 1 / 60

0 Introduction

0.1 EFPF Project Overview

EFPF – European Connected Factory Platform for Agile Manufacturing – is a project
funded by the H2020 Framework Programme of the European Commission under Grant
Agreement 825075 and conducted from January 2019 until December 2022. It engages 30
partners (Users, Technology Providers, Consultants and Research Institutes) from 11
countries with a total budget of circa 16M€. Further information can be found at
www.efpf.org.

To foster the growth of a pan-European platform ecosystem that enables the transition
from "analogue-first" mass production, to "digital twins" and lot-size-one manufacturing,
the EFPF project will design, build and operate a federated digital manufacturing platform.
The platform will be bootstrapped by interlinking four base platforms from FoF-11-2016
cluster funded by the European Commission, early on. This will inform the design of the
EFPF Data Spine and the associated toolsets to fully connect the existing user
communities of the four base platforms. The federated EFPF platform will also be offered
to new users through a unified Portal with value-added features such as single sign-on
(SSO), user access management functionalities to hide the complexity of dealing with
different platform and solution providers.

0.2 Deliverable Purpose and Scope

The purpose of this deliverable D6.2: Integration and Deployment - Final Report is to
document the current integration and deployment views of the EFPF Ecosystem Enablers
and relevant components of the EFPF Platform and base platforms participating in the
EFPF Ecosystem. It describes methods and procedures for development, test, integration
and deployment of the EFPF Ecosystem. The development, integration and deployment of
EFPF Platform tools and services and the base platforms’ services are, as specified in the
Description of Action (DoA), the responsibility of the owners and managers of these
components and are not detailed in the deliverable. However, guidelines for the versioning
and management of exposed services are specified by EFPF. The development, test and
deployment architectures used for the pilots and open calls are described in this report.
Detailed installation and configuration procedures are provided in the documentation portal
and administrative guides.

0.3 Target Audience

This document targets primarily project technical partners delivering tools and services for
the EFPF platform: stakeholders involved in building, testing and maintaining software or
performing system administration. This also includes potential future stakeholders and
external organizations that will expose their platforms, tools or services to be integrated
with EFPF either through pilots or open call experiments. A major audience for the
document is EFF, who need to know how to plan for the operation and support of the
EFPF Ecosystem in the future.

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 2 / 60

0.4 Deliverable Context

The background context of this document includes the architecture description (D3.1
“EFPF Architecture I”) outlining the targeted system design and organisation of functional
architectural elements, the project plan (DoA) for the delivery of the relevant results. It is
also related to deliverables on operational management and maintenance of the EFPF
platform.

The document also refers to the technical infrastructure, tools and methods, used in
development and deployment of the EFPF system.

Deliverable D7.2 “Operational Management and Maintenance of EFPF Platform-II”, will
report the operational viewpoint e.g., monitoring, backup and support. Some design
decisions reported in the deliverable are enablers for these operational
features/capabilities. Security will be reported in D5.15 “EFPF Security and Governance -
Final Report”.

0.5 Document Structure

This deliverable is broken down into the following sections:

• Section 0 Introduction: An introduction to this deliverable, including a general
overview of the project, an outline of the purpose, scope, context, status, and target
audience of the deliverable at hand.

• Section 1 EFPF Integration and Deployment Update: Provides an overview of the
EFPF architecture following the process and method based on ISO/IEC/IEEE
42010:2011 “Systems and software engineering - Architecture description” [IEEE
42010, 2011]. The relevant Viewpoints and Quality Characteristics are outlined.

• Section 2 Development Viewpoint: Describes the Development Viewpoint including
module organization and codeline organization of the EFPF Ecosystem and
describes the deployment pipeline for the Data Spine and business critical
Ecosystem and validation and testing procedures and tools.

• Section 3 Deployment Viewpoint: Documents the Deployment Viewpoint including
the Runtime Platform, with the Development, Test and Production environments and
dependencies.

• Section 4 After EFPF: Recommendations for EFF and Further Work:
Summarizes Lessons Learned from the chosen development approach

• Section 5 Conclusion and Outlook: Discusses post project activities including the
migration to the EFF.

Annexes:

• Annex A: Document History

• Annex B: References

• Annex C: Development Viewpoint Table

• Annex D: Deployment Viewpoint Table

• Annex E: dependency Table

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 3 / 60

0.6 Document Status

This document is classified as dissemination level “public”.

0.7 Document Dependencies

This document is the second part of two related deliverables, D6.1 “EFPF Integration and
Deployment-I”, delivered in M18 and this report, D6.2: “EFPF Integration and Deployment-
Final report”. The classification of ecosystem elements used is described in “D3.12 EFPF
Data Spine Realization – Final Report” which also provides additional design descriptions
of components.

0.8 Glossary and Abbreviations

A definition of standard terms related to EFPF, as well as a list of abbreviations, is
available at https://www.EFPF.org/glossary

0.9 External Annexes and Supporting Documents

Annexes and Supporting Documents:

• Annex A: Document History

• Annex B: References

• Annex C: Development Viewpoint Table

• Annex D: Deployment Viewpoint Table

• Annex E: Dependency Table

0.10 Reading Notes

• The sections of the preceding D6.1 deliverable detailing component information have
been moved to tables in annexes. The sections provide an overview of the
development and deployment architecture.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 4 / 60

1 EFPF Integration and Deployment Update

1.1 EFPF Architecture Context View

Figure 1 presents an overview of the high-level architecture of the EFPF ecosystem that
consists of the Ecosystem Enablers and tools, services, and platforms from various
providers. In contrast to the high-level architecture diagrams from the previous deliverable
D3.11, the architecture in Figure 1 extends the central box of Data Spine to include more
components which are collectively called as ‘Ecosystem Enablers’. The Ecosystem
Enablers are the core components that enable the creation and the functioning of the
ecosystem. In addition, it consists of separate blocks for tools/services/data APIs
indicating that the ecosystem enables the integration of individual tools and services
together with full-fledged platforms.

Figure 1. High-level Architecture of the EFPF Ecosystem

The EFPF platform follows the microservices architecture approach in which different
functional modules implement individual functionalities that can be composed based on
specific user needs. In order to implement this approach, all components in the EFPF
ecosystem are prescribed to implement and publish open interfaces, preferably REST
interfaces, allowing the exchange of data.

The EFPF ecosystem is designed considering the federation approach in mind where the
distributed heterogeneous digital manufacturing platforms developed, provided and
managed by different independent entities permit the creation of added value within the

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 5 / 60

ecosystem. To enable communication among them, an integration and communication
layer, i.e., the Data Spine that acts as a translator/adapter between them is used. In
addition, the rest of the Ecosystem Enablers provide the common core functionality and
the digital infrastructure that is needed for the efficient operation of the ecosystem. Thus,
the EFPF ecosystem as a whole follows Service-oriented architecture (SOA) style. The
main elements in the EFPF federation are:

• Ecosystem Enablers: In the previous version of the EFPF ecosystem architecture,
the Data Spine, that provides the interoperability infrastructure that interlinks and
establishes interoperability between heterogeneous tools, services, and platforms
and enables the creation of composite applications was illustrated as the only central
core entity. In the latest version of architecture presented in this final report, the
architectural vision was extended beyond interoperability and service composition to
also include DevOps for easy deployment, clustering for high availability, automation
for better usability, and components for an efficient infrastructure monitoring,
management, operations, etc. The Ecosystem Enablers are categorized into 6 types
based on the functionality they offer:

1. Identity Federation, Cross-Platform Interoperability & Service Composition
(Data Spine)

2. DevOps, Maintenance & Support
3. API Management
4. Unified Functionality
5. Essential Platform-Based Functionality
6. Governance Rules & Trust Mechanisms

• Data Spine: This Ecosystem Enabler is the central entity or gluing mechanism in the
EFPF federation. The Data Spine provides the interoperability infrastructure that
initially interlinks and establishes interoperability between the four base platforms:
COMPOSITION, DIGICOR, NIMBLE and vf-OS (see D3.1 for more details). It
adheres to common industry standards and follows a modular approach to enable
the creation of a modular, flexible, and extensible ecosystem. Therefore, it can be
easily extended beyond interconnecting the base platforms to “plug in” new 3rd party
platforms and interlink them with the already connected platforms. Figure 1 also
highlights the platform agnostic nature of the Data Spine, i.e., it is evident from the
high-level architecture that as far as interactions with the Data Spine are concerned,
there is no distinction between the EFPF platform and the base platforms or any
other 3rd party platforms. Thus, the Data Spine would be independent from the rest of
the EFPF platform. This hypothetically means that even if the EFPF platform were
“switched-off” in the future, the Data Spine would not be affected and therefore would
continue to support an interconnected ecosystem.

• EFPF Platform: This is a digital platform that provides unified access to dispersed
(IoT, digital manufacturing, data analytics, blockchain, distributed workflow, business
intelligence, matchmaking, etc.) tools and services through the Ecosystem Enabler
called ‘EFPF Portal’ that acts as the single point of entry for the ecosystem. The tools
and services brought together in the EFPF platform are the market ready or
reference implementations of the Smart Factory and Industry 4.0 tools from the EFPF
project partners. The collection of enhanced versions of such tools and services from
the base or 3rd party platforms deployed together as microservices would constitute
the EFPF platform. These micro-services are made accessible through the EFPF
Portal using the Single Sign-On (SSO) functionality offered by the Data Spine.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 6 / 60

• Base Platforms: The EFPF ecosystem is created by initially interlinking the four
digital manufacturing platforms from the European Factories-of-Future (FoF-11-2016)
cluster focused on supply chains and logistics [DMC22]—namely NIMBLE [NIM22],
COMPOSITION [COM22], DIGICOR [DIG22], and vf-OS [VFO22]. These are termed
as the ‘Base Platforms’. The base platforms provide functionality that is
complementary to each other with minimum overlap and hence by interlinking them,
the EFPF ecosystem is able to offer a comprehensive set of business functions.

• 3rd Party Platforms: In addition to the four base platforms, the EFPF ecosystem
enables interlinking of other 3rd party platforms that address the specific needs of
connected smart factories. The examples of 3rd party platforms that joined the EFPF
ecosystem include ValueChain’s Network Portal platform [VLC22], Nextworks’
Symphony platform [NXT22] and SMECluster’s Industreweb platform [C2K22].

• 3rd Party Tools, Services, and Data: The EFPF ecosystem can also be extended by
connecting individual tools, services, and data APIs, etc., that do not belong to an
existing platform.

1.2 EFPF Integration and Deployment

The objectives of the EFPF Integration and Deployment work package have been to
provide a development and deployment architecture for the integrated EFPF platform (i.e.,
Ecosystem Enablers), so that EFPF, and later EFF, can perform continuous integration of
the Ecosystem Enablers, manage its deployment on partner infrastructure and release
incremental versions of the Ecosystem Enablers for functional testing. The owners of third
party tools and services, base platforms and EFPF Platform tools and services will
manage the respective development and deployment of their resources.

The work has included the selection and development of tools, services and platforms for
integration, deployment, maintenance and quality of service, including a code repository
and tools for continuous integration and deployment.

The development and deployment architecture to support the software development
process for the Data Spine and Ecosystem enablers and ensure that the EFPF platform
runtime environment could support the pilot activities and large-scale Open Call
experimentation activities during the project.

The Ecosystem Enablers and the infrastructure for development and deployment will be
transferred to the EFF after the end of the EFPF Project. Consequently, the design
decisions for development and deployment also must support the organic growth of the
platform ecosystem and be ready for – or easily extensible to – full scale commercial
operation by the EFF.

The major architectural concerns have been to enable a modular and extensible
infrastructure for the Ecosystem Enablers where new modules and components can be
added, development can be distributed, deployment can be made on premise, cloud or
distributed, and quality attributes like scalability, maintainability and availability are
ensured. The heterogeneous nature of the development organization with many
organizations in different locations, using different tools, had to be considered when
designing the architecture. Constraints on common processing, software and
standardization are kept to the level necessary to ensure the architectural design goals
while not hindering development.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 7 / 60

1.3 Viewpoints

This deliverable follows the same process and methodology for architectural description
(AD) [Hil00] as in deliverable D6.1, which is based on ISO/IEC/IEEE 42010:2011 “Systems
and software engineering - Architecture description” [IEEE 42010, 2011].

The development and delivery of the key components in the EFPF architecture fall within
the Development and Deployment viewpoints of the EFPF architecture, as outlined in
Rozanski and Woods [RW12].

The data comprising the development and deployment views in D6.1 was gathered by an
architecture description template using a selection of views from the viewpoints described
by Rozanski and Woods [RW12]. The information gathered was chosen to get a picture of
the current state of the components and provide information to develop a suitable target
development and deployment architecture for the pilots and open calls. The process of
documenting ownership and control over source code was also a concern. Information
about development, deployment, testing and release schedules for all components was of
interest to design and set the scope for the deployment pipeline and runtime
environments.

During the project, selected information on development and deployment for relevant
components has been kept in Gitlab. For D6.2, an updated version of this template was
combined with configuration information and sent out to partners to gather the most recent
updates to the selection of views. With the CI/CD process and its scope defined, detailed
information on the development and testing practices of components outside of Ecosystem
Enablers were no longer a concern for the EFPF architecture. These are now the
responsibility of the component owners, interaction with EFPF is managed by Governance
Rules and up-to-date information on deployment and versions may be found in the Service
Registry. The collected information is presented in overviews in the document and
spreadsheets in the Annexes. The supplied information has only been minimally edited to
avoid distorting the data. Contact information has been removed. Some answers are not
consistent and need further updates even after several survey iterations. Enforcing the use
of the suite of API management tools will likely help with keeping this data updated but
gathering and continually updating the information needed for the ecosystem architects is
a challenge that EFF will need to consider.

The Operational Viewpoint [RW12] documents how the system, running in its production
environment, will be administered, operated, and supported. This view will be reported in
“D7.2 Planning, Operational Management and Technical Support for EFPF Platform - Final
Report” in M48. However, some concerns overlap with this report and will be mentioned
here. Examples of concerns covered by the Operational Viewpoint are installation and
upgrade, functional migration, data migration, operational monitoring and control, alerting,
configuration management, performance monitoring, support, backup and restore.

1.3.1 Development View

The development viewpoint supports the software development process and describes the
aspects of the architecture of interest to stakeholders involved in building, testing, and
maintaining the system. Models commonly used in this view are module structure models,
common design models, and codeline models. The concerns addressed are module
organization, codeline organization, testing and design standards and the tools and
processes used in development. The development view design decisions have not been

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 8 / 60

normative for tool and services in the EFPF Platform or for Base Platforms, only
Ecosystem Enablers. Descriptive information has been collected for all components
developed by the project, however, to provide an overview of compatibility and
dependencies.

This deliverable documents module organization describing the logical grouping of code
and the codeline organization with repository, build and test system. This includes the
following issues:

• Ownership, and availability of the source code

• Instrumentation, the deployment pipeline

• Standards for design and testing, policies and guideline

• Validation and testing

• Policies and guidelines

• Delivery schedules: Continuous, fixed schedule, or when needed

• Releases: the release process for the Ecosystem Enablers, primarily ensuring that
new releases of the Data Spine can be deployed without interrupting operations.

• Versioning: the externally visible items that should be subject to versioning: data
schemas and formats, protocols and standards and interfaces. Dependent services
can be notified of the deprecation of an interface by the Interface Contracts
Management Tool.

1.3.2 Deployment View

The deployment viewpoint describes the mapping of software artefacts to the system’s
runtime environment and the dependencies the system has on the runtime environment.
Models used are e.g. runtime platform models, network models and dependency models.
These address concerns such as required hardware or cloud hosting specifications,
software dependencies, runtime platforms, technology compatibility and network
requirements, expressed by stakeholders e.g. system administrators, developers and
testers.

• Dependencies

o The dependencies to other components, primarily for use when designing
integration testing and to provide an integrated dependency view

• Runtime Platform

o Description of runtime platform for development, testing and production.
Current status and planned runtime platform for pilots and open call (base
platforms and services)

o Container technology, orchestration and management are provided by a
layer in the runtime platform.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 9 / 60

1.4 Concerns

The development and deployment architecture was developed to fulfil the objectives stated
in the Description of Action and the and quality attributes relevant for Open Call and EFF
operation. The concerns and quality attributes that influenced the design was:

Performance efficiency: This quality attribute represents performance relative to the
amount of resources used under a given set of conditions [IEEE 42010, 2011]. The
runtime environment and container technology has been designed to support horizontal
and vertical scaling. The deployment architecture must not limit the ability of the system to
meet performance requirements. It has been designed to enable deployment on different
runtime environments and configurations, to meet changing requirements and enable fast
re-deployment on new nodes.

The EFPF ecosystem makes it easy to integrate new tools/services and promotes
reusability. To ensure high performance, high throughput and high availability, the
performance critical Ecosystem Enablers such as the Data Spine have CD/CD pipelines
configured for automated deployment and are deployed within a cluster using the Docker
Swarm container orchestration technology.

Co-existence: This quality attribute, a sub-characteristic of compatibility, represents the
degree to which a component can perform its required functions while sharing is run-time
environment with other components. The chosen container technology and deployment
process should support that the Ecosystem Enablers and subcomponents will share
runtime environment without interfering with each other, be individually upgraded and that
the runtime environment may host possible multiple versions of components.

Reliability: The runtime platform must be able to perform its functions under expected
conditions for a specified period of time (e.g for Open Call Experiments). The reliability
quality characteristic has four sub-characteristics which must be fulfilled:

▪ Maturity: the reliability of the system under the conditions of normal operation.

▪ Availability: when required for use, the system must be operational and
accessible.

▪ Fault tolerance: The degree to which the system continues to operate as specified
when hardware or software malfunctions.

▪ Recoverability: The degree to which the system can restore the desired state after
a failure or interruption.

The deployment architecture design must enable a stable environment where components
can easily be managed in a uniform manner and restarted when malfunctioning. It must
also be easy to re-deploy the system and restore the previous state as a disaster recovery
measure. Operational staff must also be able to monitor the health of the runtime platform
to rapidly address failures and malfunctions. The backup routines, deployment pipeline
and container orchestration enable system operators to rapidly restore system operation
and state.

Maintainability: how effective a system can be modified changes in requirements and its
environment. Maintainability has the following sub-characteristics relevant to the
development and deployment architecture:

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 10 / 60

▪ Modularity: a change to one component should have minimal impact on other
components. The components should have separate units of deployment and run
isolated from each other.

▪ Modifiability: the system can be modified without introducing defects or affecting
quality. Flexible configuration of deployment should be possible to modify, reuse or
switch out a subcomponent in the run-time environment without impact on other
components.

▪ Testability: The Ecosystem Enablers must be possible to deploy specifically for
test, and testing procedures and tools will be developed.

Important to the maintainability of EFPF Ecosystem Enablers is that anyone in the support
team can deploy, monitor, and manage any component. To ensure this, all Ecosystem
Enablers should be managed and monitored in a unified way. The loosely coupled and
modular nature of the EFPF ecosystem helps significantly towards its maintainability. A
high-quality user documentation of the Ecosystem Enablers and the smart factory services
and tools in the EFPF ecosystem has been published on the EFPF Dev-Portal.

Portability: how effective a system or component can be transferred from one run-time
environment, e.g., changing hardware or switching between on-premises or cloud
deployment. This characteristic is composed of the following relevant sub-characteristics:

▪ Adaptability: the degree to which the system can effectively be
adapted to different deployment and runtime environments.

▪ Installability: the degree to which the system can be successfully
installed and uninstalled in the specified environment.

This quality attribute is important to the future application of EFPF in commercial operation
by EFF. Installation must be configurable, automated, and adaptable to work in a
commercial environment. During the EFPF project, runtime environments were not fixed
from the beginning but have changed so adaptability has been a key requirement. The
design allows for different or evolving hardware, software or other operational or usage
environments, allowing EFF to choose between on-premises or cloud deployment.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 11 / 60

2 Development Viewpoint

2.1 Overview

This section provides an overview of the module organization, the codeline organization of
the EFPF Ecosystem and describes the deployment pipeline for the Data Spine and
business critical Ecosystem and validation and testing procedures and tools. The Data
Spine has been the testbed and architectural prototype when developing both the
deployment pipeline and testing procedures.

2.2 Code Organization

2.2.1 Module Organization

The EFPF ecosystem is built for the creation of innovative cross-platform applications and
to easily integrate existing, established solutions and cannot grow if a single set of coding
tools, standards and development stacks are enforced. The module organization
separates core components that comprise the integration platform and must share release
cycles and infrastructure, the Ecosystem Enablers, from the tools and services of the
EFPF Platform and 3rd party integrations.

The purpose of this section is to provide an overview of which components that have code
managed by the EFPF and will be the responsibility of EFF to support and develop after
the end of the project. The audience is ecosystem administrators, who can also use the
information to find information about EFPF Platform tools and services. It is also intended
to help identify any gaps or risks in the management of code critical to the operation of
EFF.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 12 / 60

Figure 2. Code Organization

The diagrams are simplified. The contents of the EFPF GitLab package in the diagram
represents modules for which code resides the GitLab instance set up for the project
hosted by FIT (https.//gitlab.fit.fraunhofer.de/). The “EFPF Partners Open Source”
represents modules that have the code publicly available but in a private repository. “EFPF
Partners Private” contents are proprietary code modules that are not publicly available.
Finally, “Open Source” represents external dependencies hosted publicly as open source
on GitHub or similar repositories. External dependencies were included if it was estimated
that they are business critical or changing the implementation had a significant impact on
the EFPF Ecosystem Enablers. E.g., replacing NiFi or RabbitMQ would require a
significant effort (weeks or months), while replacing PostgreSQL as the Keycloak database
is a matter of changing the Docker configuration and the work of a few days. The
Monitoring infrastructure subcomponents are included, even though they are not critical to
the operation of the platform, as the complete monitoring infrastructure would take some
time to replace. External dependencies of EFPF Platform components are not included,
e.g., Hyperledger Sawtooth or DAML which are dependencies of Smart Contracting. The
color-coding for ecosystem elements of the Context View is used.

Responsibility and ownership can mostly be inferred from the package names and is not
specifically included in the diagram. The full input from the EFPF Technical Partners is
available as Annex C.

2.2.2 Code Repository

A centralised version of GitLab is used for project planning, source code management as
well as continuous integration (CI), continuous delivery (CD), continuous deployment (CD)

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 13 / 60

and monitoring. A dedicated group is used for the development and deployment
management of tools and services in the EFPF project. New sub-groups and projects are
created and assigned to the project partners as needed. A role-based access
management is employed to ensure privacy and a fine-grained access control. The
continuous integration and testing environment are available to all EFPF base platform
and tool/service providers. It is extensively used for the core EFPF infrastructure, for
example, the deployment of the Data Spine components on remote servers is completely
automated using GitLab CI/CD pipelines, Ansible playbooks, and GitLab Runners. The
group is populated and adapted for the integration of additional platforms and/or tools.

The GitLab infrastructure primarily consists of:

• GitLab SCM: The GitLab SCM comes with Git-based repositories for source code
management that enables collaboration across the software development teams. It
also has a provision for grouping and sub-grouping of projects, a wiki for
documentation and an issue tracking functionality for management of technical
issues. In addition, it provides the Milestone management functionality that can be
used for project planning and release management at group-level.

• https://gitlab.fit.fraunhofer.de/

• GitLab CI/CD: The GitLab CI/CD pipelines enable the development teams to build,
test, deliver and monitor their code as a part of a single, integrated workflow in order
to collaborate easily and efficiently. A CI/CD pipeline can be configured to be
triggered on each commit or code push to a particular branch. The GitLab CI/CD
infrastructure comes with a Docker registry for CD. A sample project with a simple
workflow that serves as a usage example for the GitLab CI/CD process has also
been provided for reference.

• https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-
deployment/container_registry

The GitLab infrastructure is hosted on Fraunhofer FIT's servers in Sankt Augustin,
Germany. The user registration data is kept and removed at user’s request. The source
code, wiki, issues, Docker images, build and test logs kept in GitLab are visible to the user
and can be removed by the user or the repository/project owner at any time. The GitLab
project resources can be configured as private (only specific users), internal (every user),
or public (internet). Figure 3 illustrates a snapshot of the ‘EFPF Portal’ project on GitLab.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 14 / 60

Figure 3. The EFPF Portal GitLab project

2.3 Deployment Pipeline

The deployment is the process of making an application work on a specific target machine.
Nowadays, the increasing number of virtualization technologies and virtual application
management system (like container orchestrator) makes the deployment operation more
challenging, and it suggests to create generic patterns that can deploy application to
different virtual environments.

Usually, this operation is automated using CI/CD Pipelines, a system to automate
DevOps processes through a description of the operations that must be sequentially
executed.

The pipelines can also be split in two main categories:

• Continuous Integration (CI) Pipelines: A set of operation in which all the
developers merge code changes in a central repository. Each code change triggers
an automated build and test system to provide feedbacks to the developer who
made the change.

• Continuous Delivery and Deployment (CD) Pipelines: A set of operation to
move the built code to the target environment, which can be the staging
environment (to perform the final tests and make the software ready for the
production environment) or directly the production environment, if the acceptance
tests have already been executed.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 15 / 60

Figure 4. CI/CD Pipelines

As introduced in D3.3, the EFPF ecosystem is composed by a set of software components
that need to be deployed and kept updated over the time. A centralized Gitlab repository
contains all the tools and configuration necessary to deploy or update a component to the
corresponding environment (test and production). A high level overview of the EFPF CI/CD
Pipeline system is shown in Figure 5:

Figure 5. EFPF CI/CD Pipeline

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 16 / 60

Where all the operation are described in the following table

CI/CD
Operation

Tool Description

BUILD Docker The EFPF Components have been
delivered as Docker Containers,
therefore, a Dockerfile is responsible to
produce the artifacts

CONFIGURE Ansible + Docker Compose The software is pre-configured using a
set of ansible scripts, in combination of
other specific Container’s
configurations described by the
docker-compose file (produced by the
ansible script itself)

DEPLOY TO
TEST

Gitlab CI/CD Pipelines The tools provided by GitLab (Gitlab
CI/CD System) are responsible to
transfer all the artifacts and their
configuration files to the target
machine and execute the boot up of
the service

ACCEPTANCE
TEST

Human validation of the
system + automatic tests

Once the service has been deployed, a
first human evaluation is performed to
ensure the correctness of the
deployment in terms of functionalities.
Moreover, a periodic execution of
some tests ensure that the system is
constantly up and running as expected

DEPLOY TO
PRODUCTION

Gitlab CI/CD Pipelines The tools provided by GitLab (Gitlab
CI/CD System) are responsible to
transfer all the artifacts and their
configuration files to the target
machine and execute the boot up of
the service

Most of the EFPF tools and services are configured and deployed through Ansible
Playbooks, a tool that offers a repeatable and re-usable way to execute a set of
instructions through an optimized approach (the current statement is executed only if
needed). For instance: a “create directory” instruction is executed only if the directory itself
has not already been created.

The Ansible Playbooks are stored in the EFPF Gitlab instance (repository efpf-integration-
and-deployment) and two main branches has been created:

• Master: it contains the ansible playbooks related to the test environment

• Production: it contains the ansible playbooks related to the production environment

Playbooks are responsible to address all the tasks related to the pre-configurations and
(some of) post-configurations of the services, including:

• Creating directories and docker volumes if needed

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 17 / 60

• Creating docker networks

• Copying all the services’ configuration files from the Gitlab machine to the target
machine

More in details, here is the procedure to write an EFPF CI/CD Pipeline to deploy and
integrate a component within the EFPF ecosystem:

Identification of the dependencies with other components in the EFPF ecosystem

The first step is to identify whether the component to be deployed is strictly dependent to
one or more EFPF component in terms of day-0 configuration variables (an example could
be whether a component should have an EFPF Security Portal pre-configured user at boot
time, like the EFPF Integration Flow Engine).

In this case, the EFPF CI/CD System offers an environment where a set of shared
environmental variables are hosted. This environment is hosted in the efpf-integration-and-
deployment Gitlab repository (https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-
deployment) in the VARIABLE file located in the root of the repository.

Identification of the service deployment requirements

The second step is focused on the definition of the requirements related to the
deployment. The EFPF Deployment system has been designed to automatically deploy
and manage Docker Containers. This means that, on top of this process there are a set of
Docker images that need to be cached into the EFPF Gitlab Container Registry
(https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-
deployment/container_registry). A multi-container docker services is described by a
docker-compose, a standard YAML descriptor that is used by the docker-compose
orchestrator to understand the basic information of the services to be deployed, including:

• The number of microservices that composes the overall deployment

• Which Docker image should be downloaded to create each Docker container

• How the microservices are interconnected in terms of virtual networks

• Which docker volumes should be created and, if needed, which of those are shared
among different microservices

• Environmental variables, port to be exposed etc.

The output of this step consists in two information:
1. How many microservices composes the overall deployment?

2. Which docker images should be pulled and (consequently) cached in the EFPF
Container registry?

Now, it is possible to fill the second critical deployment configuration file, the Local
Variable File, placed under the directory “vars”, in the root of the EFPF Integration and
Deployment Gitlab Repository. Here is the template of this file

https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-deployment
https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-deployment
https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-deployment/container_registry
https://gitlab.fit.fraunhofer.de/efpf-pilots/efpf-integration-and-deployment/container_registry

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 18 / 60

##################################### <SERVICE NAME> ####################################

##################################### LOCAL VARIABLES ####################################

THIS VARIABLE IS REALLY IMPORTANT (NUMBER OF SERVICES IN THE DOCKER-COMPOSE FILE)

NUM_SERVICES=<how many microservices compose the overall service deployment>

################################ PLAYBOOK LOCAL VARIABLES #####################################

export <SERVICE_NAME>_PLAYBOOK_PATH=<path of the Ansible Playbook starting from the root of the repo>

export <SERVICE_NAME>_STACK_NAME=<name of the service>

export <SERVICE_i_NAME>_IMAGE=<docker image name of the microservice #i>

export <SERVICE_i_NAME>_TAG=<docker image tag of the microservice #i>

export <SERVICE_i_NAME>_NAME=<docker container name of the microservice #i>

export <SERVICE_i+1_NAME>_IMAGE=<docker image name of the microservice #i+1>

export <SERVICE_i+1_NAME>_TAG=<docker image tag of the microservice #i+1>

export <SERVICE_i+1_NAME>_NAME=<docker container name of the microservice #i+1>

#… for each microservice …

################################ CI/CD LOCAL VARIABLES ###

DOCKER HUB IMGS

export DOCKER_HUB_REGISTRY#i=<url of the external registry where the docker images is stored (if unset, docker hub is taken)>

export DOCKER_HUB_USERNAME#i =<username to authenticate to the external registry (if unset, auth is not required)>

export DOCKER_HUB_PASSWORD#i =<password to authenticate to the external registry (if unset, auth is not required)>

export DOCKER_HUB_IMG#i =<full name of the docker images to be pulled from the external registry (in the form registry/img)>

export DOCKER_HUB_TAG#i =<tag of the docker images to be pulled from the external registry (assuming the form
registry/img:tag)>

#... for each microservice…

REGISTRY IMGS (The following variables are used from the CI/CD system to deploy the services after the pull-and-cache phase,
so usually should be taken from the env variables above)

export IMG#i =$<SERVICE_i_NAME>_IMAGE

export TAG#i =$<SERVICE_i_NAME>_TAG

export IMG#i+1=$<SERVICE_i+1_NAME>_IMAGE

export TAG#i+1=$<SERVICE_i+1_NAME>_TAG

export STACK_NAME=$<SERVICE_NAME>_STACK_NAME

export PLAYBOOK_PATH=$<SERVICE_NAME>_PLAYBOOK_PATH

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 19 / 60

Add a new entry to the EFPF CI/CD Pipeline

The EFPF CI/CD Pipeline system is based on the one offered by Gitlab. In the root of the
Integration and Deployment repository, there is a file named .gitlab-ci.yml that describe all
the operations that must be followed to automatically execute the CI/CD tasks.

This system is based on two jobs. Each of those jobs has been already defined through
job templates. Here are the two jobs

• Remove the current docker stack

.remove_stack: &remove_stack

 <<: *runner_tag

 stage: remove_stack

 when: manual

 script:

 - source $LOCAL_VARIABLES

 - docker stack rm $STACK_NAME || true

This job is composed by two operations: first, the local variables (explained above) are
loaded to basically set the STACK_NAME environmental variables, then the current
docker stack is removed.

• Deploy or update a docker stack

.deploy: &deploy
 <<: *runner_tag
 stage: deploy
 when: manual
 script: |
 set -ex
 source $LOCAL_VARIABLES
 docker login -u token -p $REGISTRY_TOKEN_PROD $CI_REGISTRY
 for c in `seq 1 $NUM_SERVICES`
 do
 echo "SERVICE $c"
 IMGNAME=IMG$c
 TAGNAME=TAG$c
 DOCKER_HUB_IMG=DOCKER_HUB_IMG$c
 DOCKER_HUB_TAG=DOCKER_HUB_TAG$c
 DOCKER_HUB_REGISTRY=DOCKER_HUB_REGISTRY$c
 DOCKER_HUB_USERNAME=DOCKER_HUB_USERNAME$c
 DOCKER_HUB_PASSWORD=DOCKER_HUB_PASSWORD$c
 REG_IMG=$(eval echo "\$${IMGNAME}")
 REG_TAG=$(eval echo "\$${TAGNAME}")
 HUB_IMG=$(eval echo "\$${DOCKER_HUB_IMG}")
 HUB_TAG=$(eval echo "\$${DOCKER_HUB_TAG}")
 HUB_REGISTRY=$(eval echo "\$${DOCKER_HUB_REGISTRY}")
 HUB_USERNAME=$(eval echo "\$${DOCKER_HUB_USERNAME}")
 HUB_PASSWORD=$(eval echo "\$${DOCKER_HUB_PASSWORD}")
 RET=0
 docker manifest inspect $CI_REGISTRY_IMAGE/${REG_IMG}:${REG_TAG} > /dev/null || RET=1
 if [$HUB_TAG == "latest"];
 then
 RET=1
 fi
 if [$RET -eq 1]
 then
 if [-z ${HUB_PASSWORD}];
 then
 echo "PULLING WITHOUT CREDENTIALS"
 else
 if [-z ${HUB_USERNAME}];
 then

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 20 / 60

 echo "PULLING IMAGE WITH TOKEN"
 HUB_USERNAME=token
 fi
 if [-z ${HUB_REGISTRY}];
 then
 echo "LOGIN TO DOCKER HUB"
 fi
 echo "LOGIN TO ${HUB_REGISTRY}"
 docker login -u ${HUB_USERNAME} -p ${HUB_PASSWORD} ${HUB_REGISTRY}
 fi
 echo "REMOTE PULLING IMG ${HUB_IMG}:${HUB_TAG}"
 docker pull ${HUB_IMG}:${HUB_TAG}
 docker tag ${HUB_IMG}:${HUB_TAG} $CI_REGISTRY_IMAGE/${REG_IMG}:${REG_TAG}
 docker login -u token -p $REGISTRY_TOKEN_PROD $CI_REGISTRY
 docker push $CI_REGISTRY_IMAGE/${REG_IMG}:${REG_TAG}
 fi
 docker pull $CI_REGISTRY_IMAGE/${REG_IMG}:${REG_TAG}
 done
 mkdir secret
 echo "$ANSIBLE_SSHKEY" > secret/ansible.key
 chmod 400 secret/ansible.key
 ansible-playbook $PLAYBOOK_PATH --private-key=~/.ssh/id_rsa

This job, based on the local variables explained above, implements the following
operations:

• Pull and cache all the docker images specified in the Local Variable file (it logins to
the remote docker registry if needed)

• Execute the Ansible Playbook defined in the PLAYBOOK_PATH environmental
variable

To define a new entry in the CI/CD pipeline system based on the templated defined above,
a new section at the end of the .gitlab-ci.yml must be defined like the following one:

.local-<my_service>: &local-<my_service>
 variables:
 LOCAL_VARIABLES: vars/<my_service>.env

clean-<my_service>:
 <<: *remove_stack
 <<: *local-<my_service>

deploy-<my_service>:
 <<: *deploy
 <<: *local-<my_service>

This will add two jobs above the others already defined

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 21 / 60

Figure 6. Pipeline Jobs

Write the Ansible Playbook

Last step is to write the core of the pre and post-configuration of the service. As introduced
above, Ansible has been chosen to execute all the operation need to prepare the
deployment environment of a services and, eventually, perform some of the day-0
configuration once the service is up and running.

Ansible playbook can be highly parametrized using the environmental variables defined
above, so that if a value should be changed it’s not needed to modify the playbook but,
instead, changing the environmental variable and re-running the pipeline is sufficient to
update the running services (zero-downtime is also ensured by the Docker Swarm
orchestrator, as written in the next sections). Here is an example of how to use variables
with Ansible:

 vars:

 ci_registry_image: "{{ lookup('env', 'CI_REGISTRY_IMAGE') }}"

 service_registry_image: "{{ lookup('env', 'SERVICE_REGISTRY_IMAGE') }}"

 service_registry_tag: "{{ lookup('env', 'SERVICE_REGISTRY_TAG') }}"

 service_registry_name: "{{ lookup('env', 'SERVICE_REGISTRY_NAME') }}"

 rabbitmq_default_user: "{{ lookup('env', 'RABBITMQ_DEFAULT_USER') }}"

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 22 / 60

 rabbitmq_default_pass: "{{ lookup('env', 'RABBITMQ_DEFAULT_PASS') }}"

 registry_token: "{{ lookup('env', 'REGISTRY_TOKEN') }}"

 ci_registry: "{{ lookup('env', 'CI_REGISTRY') }}"

 registry_token_prod: "{{ lookup('env', 'REGISTRY_TOKEN_PROD') }}"

The macro lookup tells to Ansible that the variable should be fetched from the
environmental variables.

Here are some of the most common operations that have been used from the already
deployed component:

• Create a folder if it doesn’t exist

 - name: create tmp directory

 file:

 path: /tmp/serviceregistry

 state: directory

• Create a docker network if it doesn’t exist

 - name: Create the network if not exists

 docker_network:

 name: security-network

 driver: overlay

 scope: swarm

• Generate the docker-compose file from a jinga template

 - name: generate serviceregistry docker-compose

 template:

 src: ./docker-compose.yml.j2

 dest: /tmp/serviceregistry/docker-compose.yml

• Deploy the service (the docker-compose file should be already generated

 - name: deploy

 shell: docker login -u token -p {{ registry_token_prod }} {{ ci_registry }} && docker stack deploy -c
/tmp/serviceregistry/docker-compose.yml --with-registry-auth serviceregistry

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 23 / 60

2.4 Validation and Testing

2.4.1 Integration Testing

Integration testing is the phase in testing for the EFPF platform in which individual
components of the Data Spine are combined and tested as a group. Integration testing is
conducted every time a new deployment is made to evaluate the compliance of the system
or component with the specified functional requirements collected during the development
of the platform.

 Integration Testing Scenarios

The integration testing focus on the core of the EFPF infrastructure, the Data Spine, and
its components. The purpose of these tests is to check that each component is up, running
and communicating with the other components of the platform. Each component is tested
differently, and each feature of each component is tested separately. A more detailed
description of these scenarios is provided in D3.12.

 Integration Testing Execution

Since the implementation of the selected Integration Testing scenarios, has been carried
out using the GitLab CI/CD infrastructure, a dedicated GitLab project, Testing EFPF, has
been created for this purpose.

Figure 7. The testing pipeline console

The Gitlab project EFPF Testing contains the source code for all the integration test
scenarios. To run the test the users have just to open the Pipelines tab in the CI/CD
section of the project. In this screen it is available the information about the status of the
test (Passed, Skipped or Failed), the user who has run the test and the different stages of
the test.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 24 / 60

Figure 8. Environment variable definition.

When running the selected pipeline, it is possible to override the pre-defined environment
variables. This is useful since with the same pipeline it is possible to test different
environments, or it is possible as well to test the integration of a component with a different
environment.

The full list of the environment variables is available in the settings of the CI/CD
configuration for the project. From this section it is possible to change the default values
for the defined variables and to see their value. This section contains sensitive information
such as the credentials for the test accounts and it is hence only visible by the
administrators of the project.

Figure 9. List of environmental variables.

Due to how the testing pipeline (shown in Table 1) has been defined, each component of
the Data Spine corresponds to a different stage of the pipeline. Each stage can be run
independently and for multiple times and with different environmental variables.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 25 / 60

Figure 10: Pipeline composition

Since the scripts for the Integration Testing scenarios have been implemented using the
Python language, the results for each of the functionalities tested for each of the stages of
the pipeline (representing different Data Spine components) are displayed in the stage
execution results.

The example shown in Figure 11 shows the results for the service registry stage of the
pipeline where two functionalities are tested and all the operations performed to test the
functionalities are printed.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 26 / 60

Figure 11. Detailed results of the test

Table 1: GitLab CI/CD Pipeline Config

GitLab CI/CD Pipeline config

service-registry:

 stage: test

 when: manual

 image:

 name: python:3.8

 script:

 - cd service-registry

 - pip install -r requirements.txt

 -

 python ./src/main.py $EFS_URL $CLIENT_SECRET $BROKER_URL $BROKER_PORT $BROKER_USER

 $BROKER_PASS $TOKEN_ADMIN_USER $TOKEN_ADMIN_PASS

 tags:

 - container

efs:

 stage: test

 when: manual

 image:

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 27 / 60

 name: python:3.8

 script:

 - cd efs

 - pip install -r requirements.txt

 - python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN_USER $TOKEN_ADMIN_PASS

 tags:

 - container

api-security-gateway:

 stage: test

 when: manual

 image:

 name: python:3.8

 script:

 - cd api-security-gateway

 - pip install -r requirements.txt

 - python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_BASIC_USER $TOKEN_BASIC_PASS

 tags:

 - container

message-bus:

 stage: test

 when: manual

 image:

 name: python:3.8

 script:

 - cd message-bus

 - pip install -r requirements.txt

 -

 python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN_USER $TOKEN_ADMIN_PASS $T

OKEN_BASIC_USER $TOKEN_BASIC_PASS

 tags:

 - container

data-spine:

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 28 / 60

 stage: test

 when: manual

 image:

 name: python:3.8

 script:

 - cd data-spine

 - pip install -r requirements.txt

 -

 python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN_USER $TOKEN_ADMIN_PASS $T

OKEN_BASIC_USER $TOKEN_BASIC_PASS

 tags:

 - container

2.4.2 Performance Testing

The EFPF performance testing have been defined and written to be versatile and cover
different possible load testing categories. Load tests can in fact cover different categories
according to how and with which parameters they are run. At the current stage of the
EFPF Project these tests have been used to check the correct functioning of the platform
under minimal load, without any problems. Another use of these test has been to simulate
the use of the platform by many different users before opening it up for open-call projects.

Figure 12. Subcategories of performance (load) testing

 Performance Testing Scenarios

The performance testing focus on the core of the EFPF infrastructure, the Data Spine, and
its components. Three scenarios have been identified. The first two scenarios cover the
two communication ways in which the Data Spine can be involved. These scenarios cover
the communication between different tools and services. The third scenario covers instead

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 29 / 60

the situation in which users interact directly with the platform’s user interface endpoints.
The scenarios and their architecture are described in more detail in D3.12

 Performance Testing Execution

All the three Performance Test scenarios’ scripts are distributed as Docker images. This
allows for an easy distribution of the scripts. This is necessary since executing these
scripts requires a powerful machine which has to be connected with a connection capable
of sustaining all the load that the users want to simulate.

Each Docker container can be run independently from the other. To run the tests the user
has to enter the following commands on a machine running docker.

docker run --rm -it –env-file ./.env efpf-performance-testing-synchronous:latest

docker run --rm -it –env-file ./.env efpf-performance-testing-asynchronous:latest

docker run –rm -it –env-file ./.env efpf-performance-testing-ui:latest

These commands will run the containers of the tests and will fetch the required values for
the predefined environment variables from a file named .env, placed in the same folder
where the test command is run, containing the values for the required environment
variables for each test.

In Table 2-4 are reported the names and the descriptions for each of the environmental
variables required for each performance test scenario.

Table 2. Environment variables for Synchronous Scenario

Variable Name Description

BASE_URL Direct URL for the Test service providing test
data

EFPF_URL URL for the Test service providing test data
routed through the Data Spine

TARGET_USERS Number of target users to generate

EFS_URL URL for EFS

TEST_USERNAME Username of test account

TEST_PASSWORD Password of test account

INFLUX_USER InfluxDB username

INFLUX_PASS InfluxDB password

Table 3. Environment variables for Asynchronous Scenario

Variable Name Description

MQTT_TOPIC_IN MQTT topic on which publish the test data

MQTT_TOPIC_IN MQTT topic on which subscribe to the test data

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 30 / 60

N_CLIENTS Number of clients to generate which will
exchange data on the Data Spine

EFS_URL URL for EFS

TEST_USERNAME Username of test account

TEST_PASSWORD Password of test account

INFLUX_USER InfluxDB username

INFLUX_PASS InfluxDB password

Table 4. Environment variables for UI Scenario

Variable Name Description

EFPF_URL URL for the UI of the components to be tested

TARGET_USERS Number of target users to generate

EFS_URL URL for EFS

TEST_USERNAME Username of test account

TEST_PASSWORD Password of test account

INFLUX_USER InfluxDB username

INFLUX_PASS InfluxDB password

The k6 framework used as the core for these performance tests provides insights for the
outcomes of the tests straight from the command line from which these tests are executed.

However it is possible to have these tests displayed in a more user friendly way, and to
store the results of the tests in case different deployment configurations are being tested.
In this case a custom configured InfluxDB instance has to be deployed as well. If this is
provided and the correspondent environmental variables are set in the .env file, then the
test scripts will upload the results of the InfluxDB instance.

Figure 13. Distribution of test results architecture

Since the EFPF monitoring infrastructure has Grafana at its core and can be easily
integrated with the InfluxDB database, three custom dashboard have been developed to
visualize in real time the results of the tests. This choice provides a single entry point for
visualizing the results of the tests and to see the performance of the infrastructure using
the other dashboards of the EFPF monitoring infrastructure.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 31 / 60

Figure 14. Grafana Dashboard containing the test results

2.5 Policies and Guidelines

During the project, the components have been released as needed. For the Open
Calls, two coordinated releases of dependent services were made (“Phase 1” and
“Phase 2”) to ensure a stable system and a coherent set of services. No further
fixed release schedule or release train has been set, but due to the multiple teams
involved and runtime dependencies in the platform, this will be a necessity for the
Ecosystem Enablers when managed by the EFF.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 32 / 60

3 Deployment Viewpoint

3.1 Overview

The production environment was deployed in two major rollouts, after which the
Ecosystem Enablers were in place.

3.2 Runtime platform

Figure 15. Runtime Platform Overview

3.2.1 Environments

Development of the EFPF Ecosystem and integration of base platforms started at the
same time as the specification of deployment pipeline and runtime environment. The initial
versions of the Data Spine, Portal and other central components were distributed over the
hosting resources of the technical partners. In D6.1 – “EFPF Integration and Deployment
I”, this runtime environment was described. It was hosted on several distributed nodes. No
common runtime platform, container technology or choice of hosting had been decided.
This configuration now comprises the Development Environment described below.

A staging environment was necessary where tests could be run, and release candidates
approved for production. This is called the Test Environment. It was decided that one
stable environment could be used for both Pilots and Open Call experiments, the
Production Environment. A limited number of runtime environments would require less
effort to manage and support. It was a highly prioritized task to move all Data Spine
components as well as the Portal and Marketplace components to the CI/CD Pipeline and
deploy these together on the Test and Production Environments.

The decision was made to use on-premises hosting at C2K rather than relying on cloud
resources, e.g., AWS or Azure Cloud. This was motivated by having predictable costs and
a guaranteed continuous environment when transitioning to EFF.

It was decided to limit Test and Production hosting to the Ecosystem Enablers, specifically
the Data Spine and Portal. This was to ensure performance efficiency and co-existence by

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 33 / 60

having sufficient resources for the Data Spine and Portal, that provide identity
management, integration, interoperability, service composition and the main entry point to
the system. The common runtime platform and container technology specified in this
document are mandatory only for components deployed in the Test and Production
Environments. EFPF Platform Tools and Services are integrated with the Portal and Data
Spine but may choose other development and deployment solutions that have already
been invested in and fit the rest of the company product portfolio, as stated in the DOA.
This means having a coherent development and deployment architecture for the central
components of the ecosystem while lowering the barrier to entry for tool and services that
wish to be part of the ecosystem.

The choice of a common container technology provides maintainability and portability for
the Ecosystem Enablers. The project selected the widely used Docker container
technology and after evaluating Kubernetes, decided on Docker Swarm for container
management. The automated and configurable deployment pipeline together with the
container technology enables EFPF and EFF to migrate to cloud hosting or deploy multiple
instances of the platform if this is desired. E.g., the on-premises hosting can be
complemented with single-tenant instances of the Data Spine hosted in the cloud for
resource demanding customers or applications.

The diagrams have been simplified and only Ecosystem Enablers are shown. The
infrastructure and container management tools – Docker Swarm, Portainer, Nginx -
located on the test and production virtual machines with Data Spine have been omitted
from the diagrams. For detailed information, see Annex D.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 34 / 60

 Development environment

Figure 16. The Development Environment

The development environment was originally set up as a testbed by integrating the
deployments of the initial versions (major version 0) of the components in the early stages
of development. The main concern was to have a platform available for evaluating
integration and technology choices as early as possible in the project, without waiting for
design decisions on deployment pipeline, container technology, hosting, or common
standards. Iterative development of components, interfaces and user interaction is done in
this environment. Hosting is distributed even on sub-component level and components are
generally hosted at the main responsible development partner. There are no policies
guaranteeing that the deployed version of any component is stable, ad hoc deployment is
allowed, and the configuration of services, network, or security may change without notice.
However, in practice, no significant changes to the development environment architecture

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 35 / 60

have been made since deliverable D6.1 and the core components (Ecosystem Enablers)
deployed there have been stable. (A high level of intra-project co-operation and
collaboration have also helped to quickly resolve any incompatibilities.) Due to the
schedule of the Test and Production hosting procurement and set-up of the Test and
Production environments, earlier stages of the Pilots were integrated with the
Development environment.

In the diagram above, only Ecosystem Enablers are shown. The development versions of
Portal and Integrated Marketplace have been taken offline and now only deploy using Test
and Production Environments. The Development Environment has not seen much use in
the later stages of the project and can be taken offline.

 Test environment

Figure 17. The Test Environment

A staging environment for testing the release candidates of the platform components was
set up and hosted by C2K on-premises. To ensure reasonable resource requirements and
guarantee stable operation, the Test environment was reserved for deployment of the
Ecosystem Enablers. The specified CI/CD pipeline must be used to deploy in the Test
Environment. Release candidates are deployed to the Test environment according to the
respective release schedules. Test procedures are run and integration tests for dependent
components can be made against the Test server versions. The EFPF components to be
tested for integration – tools and services - will be hosted on other servers, however.
Release candidates that pass the tests can be deployed in the Production Environment.
The Test environment is currently used as a staging environment only by EFPF
components but may in the future also be used for externally developed tools and
services.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 36 / 60

The resources assigned to the Test environment have been upgraded to accommodate for
test procedures and increased use by dependent components.

At the time of writing, the Test Environment server is located at C2K premises, and its
configuration is:

• OS: Windows Server 2019

• RAM: 64 GB

• Storage: 556 GB

The EFPF components are deployed in virtual machines on Windows Server 2019:

VM Name Domain Public IP RAM CPU
Disk

Usage

EFPF-Test-Sabik ds-test.smecluster.com 62.232.213.5 24 GB 6 125 GB

 Production Environment

Figure 18. The Production Environment

The Production Environment hosts the stable versions of the Ecosystem Enablers. This
primarily means the Data Spine and Portal. However, other Ecosystem Enablers can be

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 37 / 60

hosted there if they implement the CI/CD pipeline and container technology. If they have
high cohesion with the Data Spine and Portal and resource consumption is estimated to be
low and stable, they may be hosted together with the Portal and Data Spine on the same
nodes. Otherwise, a separate virtual machine is set up on the server. For the EFF,
codeline organization may be a factor as well – deploying proprietary code together with
EFF managed code may introduce a support problem. Performance efficiency and
reliability for the Data Spine and Portal is the deciding factor when allowing other
components to be deployed in the Production Environment.

The resources assigned to the Production environment was initially based on an estimate
of the requirements of the most resource consuming sub-components of the Data Spine,
the Message Bus and the Integration Flow Engine, given data throughput in number of
events and megabytes of data per second. A reliable estimate was found to be hard to
provide as it depends on the usage patterns of these components and the optimizations
that can be made. The resources available in the Production Environment have been
upgraded to match actual resource requirements during the Open Call experiments.

Migration of the NIMBLE service used in federated search - currently hosted by SRFG – to
the NIMBLE instance on the production server is in progress. Only the production server
instance is shown in the diagram.

At the time of writing, the Production Environment server is located at C2K premises, and
its configuration is:

• OS: Windows Server 2019

• RAM: 176 GB

• Storage: 2 TB

The EFPF components are deployed in virtual machines on Windows Server 2019:

VM Name Domain Public IP RAM CPU Disk Usage

EFPF-NIMBLE nimble.smecluster.com 62.232.213.5 16 GB 1 100 GB

EFPF-Prod-Master efpf.smecluster.com 62.232.213.8 24 GB 8 100 GB

EFPF-Prod-W1 efpf.smecluster.com 62.232.213.8 24 GB 8 100 GB

EFPF-Prod-W2 efpf.smecluster.com 62.232.213.8 49 GB 8 100 GB

SDSS- Alasia sdss.tools.smecluster.com 62.232.213.6 8 GB 1 50 GB

The Data Spine and Portal are deployed on one master and two worker nodes. The
NIMBLE instance and the Secure Data Store Solution (SDSS) are deployed separately.

The inter-factory marketplace services of the COMPOSITION base platform have been
integrated into the EFPF Unified Functionality and the instance that was connected to
EFPF during the first phases of the project has been shut down. Other instances of the
COMPOSITION platform – which was designed as single tenant, with multiple per-factory
instances connected by the inter-factory services – may connect to EFPF is they choose to
do so.

The Accountancy Service, Federated Search and Matchmaking Service are located on
project partner servers. The possibility of migrating these to the Production Environment
server should be investigated.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 38 / 60

3.2.2 Container Technology, Orchestration and Management

The EFPF ecosystem is composed by a set of microservices developed and deployed
following the EFPF CI/CD System explained above. Most of the source code is hosted on
the EFPF Gitlab instance, which offers the possibility to automatically build and release the
software through its embedded CI/CD system.

Once the build system has produced the artifacts (mostly docker images) to be deployed
in the target environment, the choice of the orchestration and management technology is
crucial to ensure the stability and the sustainability of the services over the time.

An orchestration tool suitable to host the EFPF services must ensure:

• Ease to use: The EFPF integration and deployment routine will be used to expert
and non-expert end users. The container technology must be a good tradeoff
between easy to use and overall maturity/stability

• Ease to maintain: The EFPF platform will be composed by a huge number of
different services, with different virtualization entities (virtual networks, virtual disks
like docker volumes and so on). An easy to maintain platform reduces the risks of
services downtime.

• Maturity: Since the EFPF is a ready-for-production platform, it should ensure an
high level of stability and maturity

• Zero downtime update: Most of the EFPF services must be up and running 24/7.
The orchestrator must ensure zero-downtime when a service is updated, scaled or
some configuration change.

• Ease to scale: The orchestration technology must offer an easy to scale clustering
solution, to provide a smart way to increase the number of “workers” VMs

The next table shows the overview of the two EFFP environments:

Environment # VMs vCPU RAM Disk Size Orchestrator

Production 3 8 24GB 100GB Docker Swarm

Test 1 8 24GB 100GB Docker Compose

The Production environment offers Docker Swarm as container orchestrator technology.
Swarm is a container orchestrator based on a “multiple masters multiple workers”
clustering system. Workers can be dynamically plugged into the cluster; one worker can
dynamically become a master. The maintenance of the distributed system is ensured by
the master nodes, which can be interrogated to

• Add a new node to the cluster

• Change the role of a cluster node (master to worker and vice versa)

• Assign a label to a cluster node (labels can be used to tag a node and distinguish
it from the rest of the cluster)

• Perform all the deploy and maintenance operations on the services running in the
cluster, including

o Deploy a service or a stack

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 39 / 60

o Scale a service

o Update a service or a stack

o Remove a service or a stack

o Inspect a service or a stack, to view the actual configuration

o Migrate a service or a stack from a node to another

The operations explained above can be performed using the Docker Swarm CLI. It’s
common to implement, along with the CLI, an Orchestration Management System: on the
EFPF Platform there is an instance of Portainer 2.0, which offers the full compatibility with
Swarm cluster distributed system. This service can be used to execute almost every task
to manage the swarm cluster and its services, including the real time view of the logs
related to a Docker Service. The implementation of a Cluster Management System is also
a good opportunity to ensure a higher level of security of the overall platform: it’s possible
to define users that can directly interact with the host VMs (through a SSH access) and, in
the meanwhile, users that can interact with (some of) the EFPF services from a web
browser. This possibility suggested also the implementation of container isolation
mechanisms: authentication along with authorization are the base mechanisms that
uniquely identify a certain user and are used to understand the set of operations and
permissions that this user can perform to the services on top of the swarm cluster.

The EPFF Test Environment instead, is based on a single node architecture. It is used to
perform the deployment and integration tests needed to ensure the correct stability of the
service deployed in the Production Environment. The compatibility between test and
production environment is ensured by the implicit compatibility between the Docker
Compose and Docker Swarm systems: Swarm is an improvement of Compose, it adds all
the clustering features, as well as some minor features. The description of a Docker
Compose and a Docker Swarm multi-container service are the same: the standard YAML
docker-compose descriptor.

With this assumption, deploying services on the EFPF platform require the effort to
correctly describe the features and the configuration of the application through a single
descriptor that can be tested and integrated on the Test Environment and, if the
acceptance tests pass, finally deployed on the production environment

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 40 / 60

3.3 Dependencies

Figure 19. Dependency Diagram

The purpose of the dependency diagram is to give stakeholders an overview of internal
dependencies in the EFPF Ecosystem, and dependencies to external components. The
dependencies in Ecosystem Enablers are the most important for ecosystem administrators
and architects and should be updated frequently. Dependency information for the EFPF
Platform is of interest also to system integrators, however, it is the responsibility of tools
and service owners to provide and update this information.

A dependency indicates that a change to the target element (indicated by the direction of
the line) in the dependency may require a change to the source element in the
dependency. This can be used to trace the impact of changes or necessary updates to
dependencies, e.g., due to security issues.

The information is not represented on the API level; the purpose here is to trace
dependencies. The color-coding for ecosystem elements of the Context View is used. For
readability, dependencies valid for all components in a group (e.g., to Data Spine from

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 41 / 60

EFPF Platform) are shown as a dependency on group level with a slightly thicker line. The
diagram necessarily has a lot of dependencies and can be hard to read - it should be used
as a start when analysing dependencies; dependency tables with detailed information from
the technical partners are available in Annex E.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 42 / 60

4 After EFPF: Recommendations for EFF and Further

Work

The development and deployment architecture has been continuously revised and
upgraded after releases and during operation. The Pilots and Open Call experiments have
been very useful to test and validate the architecture. Encountered issues have been
evaluated and have resulted in system upgrades and improvement issues being
implemented and added to the backlog. This section will list lessons learned and
recommended actions for EFF, some of which can be implemented before the end of the
project.

4.1 Recommendations and Lessons Learned

In the EFPF Ecosystem, user creation is provided via the EFPF portal, the API
Management Tools has provided Message Bus topic creation and access control and
service registration. However, significant effort has been spent setting up access control,
SSO clients and additional user accounts and access control to tools for the Open Call
experiments. The setup of additional users, access rights, SSO clients and distribution of
client secrets, additional Message Bus vhosts, and other steps that have been performed
by the support staff during should be automated and customer self-help tools should be
provided, developed to match the EFF business model. Automating such tasks will require
less effort per customer for EFF operations and support staff.

The code of the Data Spine Enablers is Open Source, as is the case for most of the
Ecosystem Enablers. For those components that are not open source, the EFF needs to
assess if this should be requested or if the current state is satisfactory.

The Gitlab instance used as code and image repository and to run the CI/CD pipeline is
currently hosted by FIT and needs to be migrated (copied) to EFF servers at the end of the
project. Replacing Gitlab requires a lot of work since it is integral to the deployment
pipeline, the assessment of the operations team is that this is not feasible.

The Tikki ticket management system hosted by ASC needs to be migrated to EFF servers
or replaced at the end of the project. The current support organization and process could
be used with other ticketing systems.

The development environment has been largely used as a sandbox environment where
prototypes and experimental versions of components can safely call other components
and try out services and do function tests during development without disturbing
operations. The test environment could be used this way, but there is a risk that this may
interfere with tests. It is up to EFF to decide if a sandbox environment is useful and
desirable. It should only need to run on minimal specifications, with restrictions set on
Message Bus and Integration Flow Engine use.

Current server resources have been adequate for the Pilots and Open Call experiments,
although the system has successfully been vertically scaled during operation. However, in
commercial operation the resource requirements may become even higher, and some
customers may require reserved capacity for their applications. Additional scaling
strategies and deployment of multiple instances for single-tenant use or multi-tenancy

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 43 / 60

performance isolation and quotas should be explored by EFF. The architecture supports
this, it is a matter of providing the administration and configuration necessary.

The architecture ensures that zero downtime releases are enabled for Data Spine, to avoid
interruption in data traffic and processing. However, for upgrades of hardware resources or
assignment of new hardware resources to the virtual machine, downtime is necessary. In a
commercial deployment, redundancy in hardware is required to enable Data Spine
upgrades without downtime.

The experience from the project has been that it is hard to maintain up-to-date information
on components in a distributed system such as the EFPF ecosystem. Management of
component configuration on deployment pipeline level is done in Gitlab, using variables.
This environment provides good control and overview for the detailed configuration for
Test and Production environments. The use of Ansible scripts would make Ansible a
natural alternative for configuration management tool for the Data Spine, to be used by the
maintenance and operations team. The Service registry and associated tools also provide
information on run-time configuration of published services. However, high-level overview
of development and deployment view (e.g., ownership, versioning, release schedules) of
all components in the ecosystem has been done via spreadsheets, which is hard to
maintain and query. It is recommended that EFF acquires or develops a high-level
configuration management database that can keep track of this information and produce
reports for the EFF ecosystem architects.

Before handover, testing of all backup and restore routines for the core containers and
review of their documentation should be performed together with EFF staff.

4.2 Technical Meeting Outcomes

At the end of June 2022, a technical meeting was held to review the status of development
and deployment of Data Spine and EFPF Ecosystem and the future hosting, management
and sustainability of the Data Spine, other Ecosystem Enablers and EFPF Platform tools
and services. Decisions made during this meeting impact the development and
deployment architecture of EFPF and will be reported here.

Major decisions included the close-down of the development environment, which is no
longer being used and will be shut down end of August 2022. The Ticketing System (Tikki)
is using EFS in the development environment – the realm database is mirrored there and
this setup was found more resilient when tracking issues related to production EFS itself -
so it will need to be reconfigured.

A few improvements in the deployment and runtime are in progress, these were discussed
and found desirable but not critical, and will be continued for the remainder of the project.
The migration of tools and services to before the end of the project and EFF handover was
of highest priority.

Essential tools in for development, deployment and support that need to be migrated to the
production server (see section 3.2.1.3) are:

▪ GitLab SCM

▪ GitLab Container Registry

▪ GitLab CI/CD

▪ EFPF Development Portal

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 44 / 60

▪ Tikki

▪ Monitoring Services

It was also found desirable to move the Accountancy Service (currently at SRDC) to the
EFPF Production Environment so that it comes under the ownership and management of
EFF. SRDC will specify the resource requirements of Accountancy Service to assess
whether it can be moved to the Production environment and discuss this with the
maintenance and operations team.

Services from a COMPOSITION instance running on FIT AWS is used in the production
environment. E.g. the Circular Economy Pilot uses this instance. Migration of these
services to production server will be investigated.

Migration of the NIMBLE service used in federated search, currently hosted by SRFG, to
the NIMBLE instance on the production server is in progress.

Tikki is hosted and owned by ASC. The project will investigate other options for realization
of the ticketing system for EFF, e.g., Gitlab.

Knowledge transfer to EFF and additional documentation of operational procedures for the
Data Spine should take place during M43-48 of the project. Roles, responsibilities and
required skills in deployment, operation and maintenance are being documented.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 45 / 60

5 Conclusion and Outlook

 This deliverable has reported the work performed and status of the development and
deployment architecture of the EFPF ecosystem. It will be used to assess the steps that
need to be taken to transfer the operations of the ecosystem to the EFF. The information
provides an overview of code organization, dependencies, runtime environments where
desired changes and migrations can be easily identified by EFF. The delivery pipeline
provides automated, configurable deployment of the Ecosystem Enablers that enables
instances to be deployed swiftly and on different hosting infrastructure. The operational
infrastructure and component management enables the system to be horizontally scalable
and resilient and is ready for commercial operation. The infrastructure may need to be
further vertically scaled and mechanisms for single-tenant hosting explored for EFF to
meet the demands of large-scale business operation. EFF prioritized tasks for migration,
additional features and improvements and knowledge transfer before handover from EFPF
to EFF will be the focus of the remaining work in WP6.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 46 / 60

Annex A: Document History

Document History

Versions

V0.1:

Document set-up and draft Table of Contents

V0.2:

Additional content added

 V0.3:

FIT contributions integrated

V0.4:

LINKS contributions integrated

V0.5:

NXW contributions integrated

V0.6:

Additional editing, diagrams, spreadsheet information

V0.7:

Additional editing

V0.8

Updates from Technical Meeting, tables, diagrams

V1.0

Ready for internal review

Contributions

CNET:

• Mathias Axling

• Matts Ahlsen

FIT:

• Rohit Deshmukh

• Alexander Schneider

NXW:

• Gabriele Scivoletto

• Gianluca Insolvibile

LINKS:

• Edoardo Pristeri

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 47 / 60

Annex B: References

[Hil00] Hilliard, Rich. "Ieee-std-1471-2000 recommended practice for architectural
description of software-intensive systems." IEEE, http://standards. ieee. org 12.16-20
(2000): 2000.

[IEEE 42010, 2011] May, I. S. O. Systems and software engineering–architecture
description. Technical Report. ISO/IEC/IEEE 42010, 2011.

[RW12] Rozanski, Nick, and Eoin Woods. "Software Systems Architecture: Viewpoint
Oriented System Development." (2012).

[KRU04] Kruchten, P. (2004). The Rational Unified Process: An Introduction. Addison-
Wesley Professional.

 [HF10] Humble, J., Farley, D (2010). Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Addison-Wesley Professional.

[ISO11] ISO (2011). ISO/IEC 25010:2011. https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010. Accessed Sept 2019.

 [DOC19] Docker Enterprise Container Platform. https://www.docker.com/ Accessed Sept
2019.

 [POR19] Portainer for Docker Management. https://www.portainer.io/ Accessed Sept
2019.

[KEY19] Keycloak Open-source identity and access management solution
https://www.keycloak.org/ Accessed Sept 2019.

[NIM22] Nimble (Collaboration Network for Industry, Manufacturing, Business and
Logistics in Europe) Project. Available online: https://www.nimble-project.org/
(accessed on 1 June 2022).

[COM22] COMPOSITION (Ecosystem for Collaborative Manufacturing Processes) Project.
Available online: https://www.composition-project.eu/ (accessed on 1 June 2022).

[DIG22] DIGICOR (Decentralised Agile Coordination Across Supply Chains) Project.
Available online: https://www.digicor-project.eu (accessed on 1 June 2022).

[VFO22] vf-OS (Virtual Factory Operating System) Project. Available online:
https://www.vf-os.eu (accessed on 1 June 2022).

[VLC22] ValueChain’s Network Portal platform. Available online:
https://valuechain.com/products/network-portal/ (accessed 1 June 2022).

[NXW22] Nextworks’ Symphony platform. Available online:
https://www.nextworks.it/en/products/symphony (accessed 1 June 2022).

[C2K22] SMECluster’s IndustreWeb platform. Available online:
https://www.industreweb.co.uk/ (accessed 1 June 2022).

http://standards/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010.%20Accessed%20Sept%202019
https://www.docker.com/
https://www.portainer.io/
https://www.keycloak.org/
https://www.nimble-project.org/
https://www.composition-project.eu/
https://www.digicor-project.eu/
https://www.vf-os.eu/
https://valuechain.com/products/network-portal/
https://www.nextworks.it/en/products/symphony
https://www.industreweb.co.uk/

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 48 / 60

Annex C: Development Viewpoint Table

Context
View

Element
Name

Subcompo
nent

Devel
opme

nt
Team

Owner
-ship

Code
repositor

y

Containe
r registry

Versioning Code Quality
Delivery
pipeline

Delivery
schedul

e

Data Spine Data Spine FIT,
SRFG,
NXW,
ASC

FIT EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/contain
er_registr
y/)

 The contributions to the source
codes of the Data Spine
components are reviewed and
quality checked by the respective
developers, reviewers and
maintainers. The development and
quality assurance process differs
for different Data Spine
components: Apache NiFi follows
a Review-Then-Commit (RTC)[1]
process; RabbitMQ follows a multi-
step development process[2] that
involves pull requests to discuss,
review, collaborate on and accept
code contributions; LinkSmart®
Service Catalog follows a similar
development and review
process[3] that involves
contribution through pull requests
as well. The contributions are also
checked against the defined
acceptance criteria during these
processes.

[1]
https://cwiki.apache.org/confluenc
e/display/NIFI/Contributor+Guide
[2]
https://github.com/rabbitmq/rabbit
mq-
server/blob/master/CONTRIBUTIN
G.md
[3]
https://github.com/linksmart/servic
e-catalog#contributing

EFPF Phase 1-2,
no fixed
schedule
after that.

Data Spine Integration
Flow Engine
(IFE)

Integration
Flow Engine

Apache
nifi
Team[1]
and
commu
nity

[1]
https://
nifi.apa
che.org
/people.
html

Apache
Softwar
e
Founda
tion

Public EFPF When
needed.

Data Spine Service
Registry

Service
Registry

Team at
Fraunh
ofer FIT
and
commu
nity

Fraunh
ofer FIT

Public EFPF When
needed.

Data Spine Message Bus Message Bus Team at
Pivotal
Softwar
e and
commu
nity

Pivotal
Softwar
e, Inc.

Public EFPF When
needed.

Data Spine EFPF
Security
Portal (EFS)

EFPF
Security
Portal (EFS)

Team at
SRFG
and
JBoss

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/contain
er_registr
y/efpf_key
cloak)

 EFPF When
needed.

Data Spine API Security
Gateway

API Security
Gateway

Team at
SRFG
and
Apache
develop
ers

SRFG Public EFPF When
needed.

Unified
Functionality

EFPF Portal EFPF Portal
UI

ASC
(task
lead),
VLC

ASC EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
)

No versioning
strategy defined.

No coding standards defined. EFPF on
GitLab

When
needed.

Unified
Functionality

EFPF Portal EFPF Portal
Backend

ASC
(task
lead),
VLC

ASC EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
)

No versioning
strategy defined.

No coding standards defined. EFPF on
GitLab

When
needed.

Unified
Functionality

Accountancy
Service

 SRDC SRDC SRDC
Private
Repositor
y

DockerHu
b
Elasticsea
rch:
https://hu
b.docker.c
om/_/elast

A new release is
created only when
an update is
implemented on
the Accountancy
Service, since
there are no

N/A All
necessary
dashboard
s
developed
on Kibana,
based on

When
needed

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 49 / 60

icsearch
Kibana:
https://hu
b.docker.c
om/_/kiba
na

planned
scheduled
updates.

a data
model and
no
updates
are
foreseen.
The data
modal and
dashboard
s are
updated
and
deployed
when
there are
unexpecte
d
problems
happened
during
integration
. Delivery
is realized
after an
update is
implement
ed when
needed.

Unified
Functionality

EFPF
Marketplace

EFPF
Marketplace
UI

ASC
(task
lead),
SRDC

ASC,
SRFG,
CERTH,
ISMB,
SRDC
(Accou
ntancy
Service)

EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

N/A No versioning
strategy defined.

No coding standards defined. Manual
deployme
nt

When
needed.

Unified
Functionality

EFPF
Marketplace

EFPF
Marketplace
Backend

ASC
(task
lead),
SRDC

ASC,
SRFG,
CERTH,
ISMB,
SRDC
(Accou
ntancy
Service)

EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
)

No versioning
strategy defined.

No coding standards defined. EFPF on
GitLab

When
needed.

Unified
Functionality

Federated
Search

Federated
Search
Engine

SRFG
(task
lead),
CERTH

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/mat
chmaking-
services)

DockerHu
b:
https://hu
b.docker.c
om/r/nimbl
eplatform/
matchmak
ing-
service

 When
needed.

Unified
Functionality

Federated
Search

Base
Platform
Data
Indexing
Workflow

SRFG
(task
lead),
CERTH

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/mat
chmaking-
services)

N/A When
needed.

Unified
Functionality

Federated
Search

Federated
Search
Service

SRFG
(task
lead),
CERTH

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/mat
chmaking-
services)

 When
needed.

Unified
Functionality

Federated
Search

Federated
Search
Frontend
Component

SRFG
(task
lead),
CERTH

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/efpf-
portal)

 When
needed.

Unified
Functionality

Matchmaking
Service

 SRFG
(task
lead),
CERTH

SRFG EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/mat
chmaking-
services)

 No coding standards defined. Releases/
Updates
Developm
ent branch
including
separate
deployme
nt as
Docker
container.
When no
main
issues
arise,
merge dev
branch
into
productio
n branch
and
update
productio
n Docker
container
on
DockerHu
b.
Versioning
No
versioning
strategy
defined.
Delivery

When
needed.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 50 / 60

Schedule
When
needed.

API
Management

Pub/Sub
Security
Service

Front End ICE,
UoS,
AID,
VLC,
ASC

ICE EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/efpf-
portal)

EFPF
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
portal/con
tainer_regi
stry
Not
available
as
standalon
e
componen
t

 Initially deployed and tested on
ICE Servers

EFPF on
Gitlab

When
needed

API
Management

Pub/Sub
Security
Service

Backend ICE,
ASC

ICE EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/efpf-
security-
componen
ts/efpf-
pub-sub-
security/p
ub-sub-
backend)

EFPF
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
security-
componen
ts/efpf-
pub-sub-
security/p
ub-sub-
backend/c
ontainer_r
egistry
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/contain
er_registr
y/560
Also
available
in ICE
Docker
Hub

latest Initially deployed and tested on
ICE Servers

EFPF on
Gitlab

When
needed

API
Management

Pub/Sub
Security
Service

Database ICE,
ASC

ICE EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/efpf-
security-
componen
ts/efpf-
pub-sub-
security/p
ub-sub-
backend)

EFPF/Doc
ker Hub
https://hu
b.docker.c
om/_/mon
go
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/contain
er_registr
y/691
mongo:lat
est

latest Initially deployed and tested on
ICE Servers

EFPF on
Gitlab

When
needed.

API
Management

Interface
Contracts
Management
Tool

 LINKS LINKS LINKS
Public
repository
:
https://bitb
ucket.org/l
inks-
foundation
/icmt/src/
master/

N/A 0.1 Tests available in repository Other,
manual

As needed

API
Management

Service
Registration
Tool

 LINKS LINKS LINKS
Public
repository
:
https://bitb
ucket.org/l
inks-
foundation
/srt/src/ma
ster/

N/A 0.1-rc1 Tests available in repository Other,
manual

As needed

API
Management

Semantic
Information
Management
(SIM) tool

 FIT FIT EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

 When
needed.

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

 FIT,
(Deploy
ment:
NXW)

FIT EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/efpf-
integration
-and-
deployme
nt/-
/tree/MI-
test/Playb
ooks/Moni
toring_Infr
astructure,
https://gitl
ab.fit.fraun

 Public
(DockerHu
b, quay.io
- for auth2
proxy).
Endpoints
:
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/-
/wikis/Dep

 When
needed.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 51 / 60

hofer.de/ef
pf-
pilots/mon
itoring-
toolkit/-
/tree/mast
er/)

loyment-
Environm
ents

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

Monitoring
Server

Teams
at
Promet
heus,
Grafana
and
oauth2-
proxy
and
commu
nity

 Public

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

Monitoring
Data
Collectors at
Target Hosts

Teams
at
cAdvis
or
(Google
),
vector
(Datado
g, Inc. -
vector.
dev)
and
commu
nity

 Public

DevOps,
Maintenance,
& Support

Gitlab Gitlab Gitlab Gitlab.com Docker
Hub

Docker image

DevOps,
Maintenance,
& Support

EFPF
Documentati
on Portal

 EFPF EFPF EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

EFPF
https://gitl
ab.fit.frau
nhofer.de/
https://gitl
ab.fit.frau
nhofer.de/
efpf-
pilots/efpf-
integratio
n-and-
deployme
nt/contain
er_registr
y/560
Also avail

Docker image

DevOps,
Maintenance,
& Support

EFPF
Ticketing
System

Tikki ASC ASC ASC
Private
Repositor
y

ASC
Private

UI

Essential
Platform-
Based
Functionality

Product
Catalogue
Service

 SRDC SRDC NIMBLE
Github
Repositor
y
(https://git
hub.com/n
imble-
platform/c
atalog-
service)

Docker
Hub:
https://hu
b.docker.c
om/r/nimbl
eplatform/
catalogue-
service-
micro

Versions are set at
each deployment
by updating
Maven POM file.

No coding standards defined. Jenkins
continuou
s
integration

When
needed.

Essential
Platform-
Based
Functionality

Secure Data
Store
Solution

 ASC,
ISMB,
UOS-ITI

ASC EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/sec
ure-data-
store-
solution/)

EFPF
(https://git
lab.fit.frau
nhofer.de/
)

SDSS API
No versioning
strategy defined.

No coding standards defined. Gitlab
CI/CD

When
needed

Essential
Platform-
Based
Functionality

Industreweb
Collect

 C2K C2K Private N/A User definable
data model
including OPC UA
Communication
protocol - Format
is JSON by default
but can be defined
by user

Production data
model
 - ISA-95 inspired
model–used in
DIGICOR

New versions are
managed in the
development
environment and
stable versions
deployed
automatically on
new installed
nodes, and
upgraded
manually where
licensed upgrades
are included

The component initially is
deployed on a C2K test branch for
functionality testing by an in-
house test team, and stakeholders.
Once approved changes are
merged with Live branch and
deployed to the live environment
for final test.
Simple functional testing against
acceptance criteria defined for
each Jira issue.

Jenkins
continuou
s
integration
.
Individual
deployme
nt
manually
on local
nodes.

Continuou
s

Essential
Platform-
Based
Functionality

TSMatch
Gateway

 FORTIS
S

Owned
by
fortiss,
code
availabl
e under

FORTISS
https://git.f
ortiss.org/i
iot_extern
al/tsmatch

FORTISS
Git

 The Dynamic Factory Connector
component is currently deployed
at fortiss premises. When a new
functionality is introduced, tests
are first done locally; upon
approval, integration with EFPF

The
Dynamic
Factory
Connector
is
currently

When
needed

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 52 / 60

an MIT
license

services is performed and tested
(usually specific to the service and
use case).
Unit tests are used to examine the
new functionality.

deployed
at fortiss
premises.
Executabl
e version
is to be
used for
distributio
n with
manual
adjustmen
t to
accommo
date the
factory
premises.

Essential
Platform-
Based
Functionality

Symphony
Hardware
Abstraction
Layer (HAL)

 NXW All of
the
source
code is
IPR of
Nextwo
rks.

The
source
code is
owned
and
managed
by
Nextworks
, and all
IPR is the
property
of
Nextworks
.

 The versioning is
based on
Symphony release
plan and schedule.

The components continuously test
by internal test team.

Manual
deployme
nt

The
releases
and
updates
are based
on
symphony
release
plan and
schedule.

Essential
Platform-
Based
Functionality

Online
Bidding
Process

Front-end
Interfaces

CERTH CERTH EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

 2 Integration testing with LINKS'
agents + testing by end-users of
CE pilot

EFPF When
needed

Essential
Platform-
Based
Functionality

Online
Bidding
Process

 CERTH CERTH CERTH
Private
Repo -
Gitlab

DockerHu
b

API, REST with
HTTPS
V1.0

Data format for
information
exchange JSON
V1.0 -
Similar to Agents
Exchange
Language format
from
COMPOSITION
Security protocol
Basic Auth using
OpenID Connect
V1.0
 The component
provides a REST
API and
communication
protocol is HTTPS.
The security
protocol is Basic
Auth by using
OpenID Connect.
Data format for
information
exchange is JSON.
The format is
similar to Agents
Exchange
Language format
from
COMPOSITION.
Git is used for
control versioning.
In particular, the
EGit plugin from
Eclipse IDE is
used. It fits well as
the project is
developed using
Eclipse IDE and
Maven as build
tool for
dependency
management and
building of source
code
Every component
is internally tested
and after that it is
tested in
integration with
LINKS agents.

Automated tests in source code
package were created by Maven,
extended JUnit , Jetty server.
Software quality assurance by
both static and dynamic analysis
techniques, e.g. PMD tool.

 initially
Fixed
schedule
based on
project
time plan.
After that
"When
needed.
"

Essential
Platform-
Based
Functionality

Online
Bidding
Process

Matchmaking
engine for
EFPF Online
Bidding
Process

CERTH CERTH CERTH
Private
Repo -
Gitlab

DockerHu
b

API, REST with
HTTPS V1.0
Data format for
information
exchange JSON
V1.0 - Similar to
Agents Exchange
Language format
from
COMPOSITION
Security protocol -
Basic Auth using
OpenID Connect
V1.0

Automated tests in source code
package were created by Maven,
extended JUnit , Jetty server.
Software quality assurance by
both static and dynamic analysis
techniques, e.g. PMD tool.

 initial
fixed
schedule
according
o project
plan, then
"When
needed"

Essential
Platform-
Based

Business
Opportunity
Tool

Team
Formation
Tool

C2K C2K C2K
Private

N/A Ad hoc
release
process.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 53 / 60

Functionality

EFPF
Platform

Online
Bidding
Process

Agent-based
Marketplace

LINKS LINKS Public
(Github)

 N/A Other,
manual

When
needed

EFPF
Platform

Anomaly
Detection
Service

 ICE ICE ICE Gitlab
Repositor
y:
https://git.i
celab.clou
d

DockerHu
b:
https://doc
ker.hub.ic
elab.cloud
/repositor
y/analytics

No versioning
strategy defined.

The component is first test locally,
then deployed and tested in ICE
Servers

ICE Gitlab When
needed

EFPF
Platform

Customer
Trend
Analysis

Elanyo EFPF
Behavioral
Predictive
Framework
(BPF)

ELN ELN - Ad hoc
release
process.

EFPF
Platform

Blockchain &
Smart
Contracting

Blockchain
as a Service
(BaaS)

CERTH CERTH CERTH
Private
Repo -
Gitlab

 BaaS APIs
V2.0 (Actually
Supply-chain as a
service API
dedicated to
EFPF)

Smart contracts determinism and
finality can be proven with tests.

Based on
project's
schedule

Agile, as
required.

EFPF
Platform

Blockchain &
Smart
Contracting

Blockchain
DAML Smart
Contracts

CNET CNET CNET
Bitbucket

N/A DAML JSON API
v1.17.0
DAML DAR files
v1.17.0

* Not using EFPF CI/CD
* DAML scenario testing

Other When
needed

EFPF
Platform

Blockchain &
Smart
Contracting

NIMBLE
Blockchain

SRFG SRFG Github
(https://git
hub.com/n
imble-
platform/lo
gistic-
contract)

N/A Ledger API Other When
needed

EFPF
Platform

Business &
Network
Intelligence

BNIDashboar
d

ICE ICE ICE Gitlab
Repositor
y:
https://git.i
celab.clou
d/bni/bnid
ashboard

DockerHu
b:
https://hu
b.docker.c
om/reposit
ory/docker
/informati
oncatalyst
/bni-
dashboard

No versioning
strategy defined.

The component is first test locally,
then deployed and tested in ICE
Servers

ICE Gitlab When
needed

EFPF
Platform

Business &
Network
Intelligence

ELK stack
(Elasticsearc
h, Kibana)
In
development
and testing
phase

ICE ICE ICE Gitlab
Repositor
y:
https://git.i
celab.clou
d/bni/elk-
stack

DockerHu
b
Elasticsea
rch:
https://hu
b.docker.c
om/_/elast
icsearch
Kibana:
https://hu
b.docker.c
om/_/kiba
na

7.16.0 The component is first tested
locally, then deployed and tested
on ICE Servers

ICE Gitlab When
needed

EFPF
Platform

Visual & Data
Analytics
Service

CERTH/COM
POSITION
Data and
Visual
Analytics

CERTH Algorith
ms/Pyth
on
scripts
by
CERTH
- No
provisio
n of
source
code.
Pseudo
codes
and
algorith
ms in
COMPO
SITION
webpag
e.
Method
ologies
publish
ed in
scientifi
c
publicat
ions.

CERTH
Private
Repo -
Gitlab

DockerHu
b

UI services: fill
level sensors’
monitoring and
trend analysis of
fill level, tonnage
forecasting, price
forecasting based
on Deep Learning,
vibration sensors
monitoring and
vibration profile
real time analysis.

Unit, regression, acceptance
testing. Integration test with LINKS
DLT. Code quality - analysis for
errors detections based on
PyFlakes library
(https://github.com/PyCQA/pyflake
s)

Test cycle
using
staging
server.
Pilot users
are
informed
ahead (1-2
weeks) of
version
upgrade.
Complete
support
for errors
and bugs
fixing is
provided
by CERTH
continuou
sly.

When
needed.

EFPF
Platform

Deep
Learning
Toolkit

 LINKS LINKS LINKS
Public
repository
:
https://bitb
ucket.org/l
inks-
foundation
/deep-
learning-
toolkit/src/
master/

N/A 0.2-rc2 Tests available in repository Other,
manual

On
demand

EFPF
Platform

Industreweb
Visual
Resource
Monitoring
Tool

 C2K C2K C2K
Private

N/A When
needed.

EFPF
Platform

Industreweb
Global

 C2K C2K C2K
Private

N/A Ad hoc
release
process.

EFPF
Platform

Industreweb
Visual
Resource
Monitoring
Tool

 C2K C2K C2K
Private

 New versions are
managed in the
development
environment and
stable versions

In-house C2K test team, and
stakeholders. Approved changes
are merged with Live branch and
deployed to TEST for final test.
Simple functional testing against

Jenkins
continuou
s
integration
.

Continuou
s delivery
is used.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 54 / 60

deployed
automatically on
new installed
nodes, and
upgraded
manually where
licensed upgrades
are included .

acceptance criteria defined for
each Jira issue.

Individual
deployme
nt
manually
on local
nodes.

EFPF
Platform

Risk,
Opportunity,
Analysis and
Monitoring
(ROAM) Tool

 ALM ALM EFPF
(https://gitl
ab.fit.fraun
hofer.de/ef
pf-
pilots/roa
m)

There are
old
containers
hosted on
DockerHu
b, but they
can be
updated if
necessary
. The
current
containers
are
automatic
ally built
on our
server.

API Version 1.0.
API endpoints
need to include a
/v1/. We do not
plan to change
this for the
remainder of the
project.

The tool is first deployed locally
for testing of frontend features and
integration with other
tools/services. Backend
functionality is tested with unit
tests.

Gitlab
CI/CD

When
needed.

EFPF
Platform

Software
Development
Kit (SDK)

Software
Development
Kit (SDK)
Frontend
Editor

SIE SIE EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

DockerHu
b

Gitlab The features are tested by the
internal team.

SDK Ad hoc
release
process.

EFPF
Platform

Software
Development
Kit (SDK)

 CMS CMS CMS
Private

CMS
Private

 When
needed.

EFPF
Platform

System
Security
Modeler
(SSM)

 UoS-ITI Owners
hip:
UoS-ITI
Licensi
ng:
Free
use for
e-
Factory
project
partner
s and
commer
cial
agreem
ent for
others
(cf DoA
and
Grant
Agreem
ent)

UoS-ITI
Gitlab

 SSM Software (UI) Senior developer code checking
before release

Continuou
s
developm
ent
(GitLab
environme
nt)

Ad hoc
release
process.

EFPF
Platform

Symphony
Data Storage

 NXW The
source
code is
owned
and
manage
d by
Nextwo
rks, and
all IPR
is the
propert
y of
Nextwo
rks.

The
source
code is
owned
and
managed
by
Nextworks
, and all
IPR is the
property
of
Nextworks
.

 The versioning is
based on
Symphony release
plan and schedule.

The components are tested
continuously by the internal test
team.

Manual
deployme
nt

The
delivery is
based on
Symphon
y release
plan and
schedule.

EFPF
Platform

Symphony
Resource
Catalogue

 NXW All of
the
source
code is
IPR of
Nextwo
rks.

The
source
code is
owned
and
managed
by
Nextworks
, and all
IPR is the
property
of
Nextworks
.

 The versioning is
based on
Symphony release
plan and schedule.

The components continuously test
by internal test team.

Manual
deployme
nt

The
releases
and
updates
are based
on
symphony
release
plan and
schedule.

EFPF
Platform

Symphony
Event
Reactor

 NXW The
source
code is
owned
and
manage
d by
Nextwo
rks, and
all IPR
is the
propert
y of
Nextwo
rks.

The
source
code is
owned
and
managed
by
Nextworks
, and all
IPR is the
property
of
Nextworks
.

 The versioning is
based on
Symphony release
plan and schedule.

The components are tested
continuously by the internal test
team.

Manual
deployme
nt

The
delivery is
based on
Symphon
y release
plan and
schedule.

EFPF
Platform

Workflow
and Service
Automation
Platform
(WASP)

 ICE ICE ICE Gitlab
Repositor
y:
https://git.i
celab.clou
d

 Gitlab is used for
versioning and
keeping copies of
older versions.

The testing of the WASP platform
is carried out using Gradle. Gradle
tests are used to test each Jar file
which is bundled into the Docker
file and then used in the Liferay
parent image.

The
testing of
WASP is
carried out
on two
separate
servers, a
test server
and a
productio

There is a
fixed
schedule
for
delivery
with a new
stable
version
release at
the end of

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 55 / 60

n server.
The
changes
are first
deployed
on to the
test server
and if
everything
is working
as
expected
than the
stable
version is
deployed
on the
productio
n server.

each
continuou
s
developm
ent cycle.

EFPF
Platform

Analytics
Integrator
Platform
(AIP)

 SIE SIE EFPF
(https://gitl
ab.fit.fraun
hofer.de/)

AWS ECR Gitlab EFPF on
Gitlab

Ad hoc
release
process.

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 56 / 60

Annex D: Deployment Viewpoint Table
Context View

Element
Name Subcomponent

Execution
environment

Hosted at node (DEV) Hosted at node (TEST) Hosted at node (PROD)

Data Spine Data Spine FIT AWS server
SRFG Server

C2K TEST C2K PROD

Data Spine Integration
Flow Engine
(IFE)

Integration Flow
Engine

Docker
container

FIT AWS server C2K TEST C2K PROD

Data Spine Service
Registry

Service
Registry

Docker
container

FIT AWS server C2K TEST C2K PROD

Data Spine Message Bus Message Bus Docker
container

FIT AWS server C2K TEST C2K PROD

Data Spine EFPF
Security
Portal (EFS)

EFPF Security
Portal (EFS)

Docker
container

SRFG Server C2K TEST C2K PROD

Data Spine API Security
Gateway

API Security
Gateway

Docker
container

SRFG Server C2K TEST C2K PROD

Unified
Functionality

EFPF Portal EFPF Portal UI Docker
container

N/A C2K TEST C2K PROD

Unified
Functionality

EFPF Portal EFPF Portal
Backend

Docker
container

N/A C2K TEST C2K PROD

Unified
Functionality

Accountancy
Service

 Docker
container

matrix.srdc.com.tr matrix.srdc.com.tr matrix.srdc.com.tr - Investigating
move to C2K PROD

Unified
Functionality

EFPF
Marketplace

EFPF
Marketplace UI

EFPF Portal
(Embedded)

N/A C2K TEST C2K PROD

Unified
Functionality

EFPF
Marketplace

EFPF
Marketplace
Backend

Docker
container

N/A C2K TEST C2K PROD

Unified
Functionality

Federated
Search

Federated
Search Engine

Docker Apache Solr instance accessible
on: https://efactory-security-
portal.salzburgresearch.at/solr

Apache Solr instance accessible on:
https://efactory-security-
portal.salzburgresearch.at/solr

Apache Solr instance accessible on:
https://efactory-security-
portal.salzburgresearch.at/solr

Unified
Functionality

Federated
Search

Base Platform
Data Indexing
Workflow

Workflow
configuration
in XML

Currently deployed in Nifi
instance maintained by SRFG.
This will be integrated into
DataSpine (main Nifi instance in
SMECluster server) Nifi instance

https://ds-test.smecluster.com/nifi/ To be integrated into DataSpine
(main Nifi instance in SMECluster
server) Nifi instance

Unified
Functionality

Federated
Search

Federated
Search Service

Docker
container

REST service deployed on the
SRFG server, accessible on:
https://efactory-security-
portal.salzburgresearch.at/api/in
dex/swagger-ui.html

REST service deployed on the SRFG
server, accessible on:
https://efactory-security-
portal.salzburgresearch.at/api/index/
swagger-ui.html

REST service deployed on the SRFG
server, accessible on:
https://efactory-security-
portal.salzburgresearch.at/api/index/
swagger-ui.html

Unified
Functionality

Federated
Search

Federated
Search
Frontend
Component

Angular
application

Web component integrated in the
eFactory portal web application
deployed on the ASC server,
accessible on: https://efactory-
portal.ascora.eu/simple-search

Unified
Functionality

Matchmaking
Service

 Workflow
configuration
in XML

Currently deployed in Nifi
instance maintained by SRFG.
This will be integrated into
DataSpine (main Nifi instance in
SMECluster server) Nifi instance

https://ds-test.smecluster.com/nifi/ To be integrated into DataSpine
(main Nifi instance in SMECluster
server) Nifi instance

API
Management

Pub/Sub
Security
Service

Front End EFPF
Production

NA NA C2K PROD

API
Management

Pub/Sub
Security
Service

Backend EFPF
Production

NA NA C2K PROD

API
Management

Pub/Sub
Security
Service

Database EFPF
Production

NA NA C2K PROD

API
Management

Interface
Contracts
Management
Tool

 Docker
Container

LINKS Server LINKS Server LINKS Server

API
Management

Service
Registration
Tool

 Docker
Container

LINKS Server LINKS Server LINKS Server

API
Management

Semantic
Information
Management
(SIM) tool

 N/A (In development) N/A (In development) N/A (In development)

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

 Docker
Container

FIT AWS server C2K TEST C2K PROD

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

Monitoring
Server

Docker
Container

FIT AWS server C2K TEST C2K PROD

DevOps,
Maintenance,
& Support

Monitoring &
Alerting
Service

Monitoring Data
Collectors at
Target Hosts

Docker
Container

FIT AWS server C2K TEST C2K PROD

DevOps,
Maintenance,
& Support

Gitlab Docker
Container

FIT AWS FIT AWS FIT AWS - to be migrated to C2K
PROD

DevOps,
Maintenance,
& Support

EFPF
Documentati
on Portal

 Docker
Container

FIT AWS FIT AWS FIT AWS - to be migrated to C2K
PROD

DevOps,
Maintenance,
& Support

EFPF
Ticketing
System

Tikki N/A N/A ASC

Essential
Platform-
Based
Functionality

Product
Catalogue
Service

 Docker
container

N/A SRFG Staging Server C2K PROD

Essential
Platform-
Based
Functionality

Secure Data
Store
Solution

 Docker
container

- - C2K PROD

Essential
Platform-
Based
Functionality

Industreweb
Collect

 Windows,
.Net

Industreweb Server within
production facility

Industreweb Server within
production facility

Industreweb Server within
production facility

Essential TSMatch Windows, Factory Connector component Factory Connector component that Factory Connector component that

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 57 / 60

Platform-
Based
Functionality

Gateway Linux that can be used in a production
facility

can be used in a production facility can be used in a production facility

Essential
Platform-
Based
Functionality

Symphony
Hardware
Abstraction
Layer (HAL)

 Cloud Cloud Node
 NXW

Cloud Node
 NXW

Cloud Node
 NXW

Essential
Platform-
Based
Functionality

Online
Bidding
Process

Front-end
Interfaces

Angular
application

CERTH Server CERTH Server CERTH Server and accessible by
EFPF PROD Environment

Essential
Platform-
Based
Functionality

Online
Bidding
Process

 Docker
Container

COMPOSITION Production
Server – Instance dedicated to
eFactory

COMPOSITION Production Server –
Instance dedicated to eFactory
Accessible in TEST Envir

COMPOSITION Production Server –
Instance dedicated to eFactory
Accessible in PROD Envir

Essential
Platform-
Based
Functionality

Online
Bidding
Process

Matchmaking
engine for EFPF
Online Bidding
Process

Docker
Container

COMPOSITION Production
Server – Instance dedicated to
eFactory

COMPOSITION Production Server –
Instance dedicated to eFactory
Accessible in TEST Envir

COMPOSITION Production Server –
Instance dedicated to eFactory
Accessible in PROD Envir

Essential
Platform-
Based
Functionality

Business
Opportunity
Tool

Team
Formation Tool

EFPF
Platform

Online
Bidding
Process

Agent-based
Marketplace

Docker
containers

LINKS Server LINKS Server LINKS Server

EFPF
Platform

Anomaly
Detection
Service

 Docker
Container

https://efpf-
analytics.icelab.cloud/

https://efpf-analytics.icelab.cloud/ https://efpf-analytics.icelab.cloud/

EFPF
Platform

Customer
Trend
Analysis

Elanyo EFPF
Behavioral
Predictive
Framework
(BPF)

EFPF
Platform

Blockchain &
Smart
Contracting

Blockchain as a
Service (BaaS)

Virtual
Machine
Nodes

N/A CERTH Server CERTH Server - Accessible through
EFPF Portal in PROD Environment

EFPF
Platform

Blockchain &
Smart
Contracting

Blockchain
DAML Smart
Contracts

Docker N/A N/A Azure VM efpf-daml-
main.northeurope.cloudapp.azure.co
m (only one instance dev/test/prod)

EFPF
Platform

Blockchain &
Smart
Contracting

NIMBLE
Blockchain

 N/A N/A C2K PROD

EFPF
Platform

Business &
Network
Intelligence

BNIDashboard Docker
Container

Host on ICE Servers - Accessible
in DEV Environment

Hosted on ICE Servers - Accessible
in TEST Environment

Hosted on ICE Servers - Accessible
in PROD Environment

EFPF
Platform

Business &
Network
Intelligence

ELK stack
(Elasticsearch,
Kibana)
In development
and testing
phase

Docker
Containers -
Hosted on
ICE Servers

Hosted on ICE Servers -
Accessible in Dev Environment

Hosted in ICE Servers - Accessible in
TEST Environment

Hosted at ICE Servers - Accessible in
PROD Environment

EFPF
Platform

Visual & Data
Analytics
Service

CERTH/COMPO
SITION Data
and Visual
Analytics

Flask –
python micro
web
framework

 CERTH Server
& COMPOSITION Server - instance
for EFPF Accessible in TEST Envir

CERTH Server
& COMPOSITION Server - instance
for EFPF Accessible in PROD Envir

EFPF
Platform

Deep
Learning
Toolkit

 Docker
Container

LINKS Server LINKS Server LINKS Server

EFPF
Platform

Industreweb
Visual
Resource
Monitoring
Tool

EFPF
Platform

Industreweb
Global

EFPF
Platform

Industreweb
Visual
Resource
Monitoring
Tool

 Windows,
.Net

Industreweb Server within
production facility

Industreweb Server within
production facility

Industreweb Server within
production facility

EFPF
Platform

Risk,
Opportunity,
Analysis and
Monitoring
(ROAM) Tool

 Docker
container

Locally Locally https://efpf.almende.com/

EFPF
Platform

Software
Development
Kit (SDK)

Software
Development
Kit (SDK)
Frontend Editor

Docker
container in
SDK Platform
(Eclipse Che)

- - https://efpf.caixamagica.pt (Migration
to EFF environment after projects
ends is preferred)

EFPF
Platform

Software
Development
Kit (SDK)

 - - https://efpf.caixamagica.pt (Migration
to EFF environment after projects
ends is preferred)

EFPF
Platform

System
Security
Modeler
(SSM)

 UoS-ITI infrastructure UoS-ITI infrastructure UoS-ITI infrastructure

EFPF
Platform

Symphony
Data Storage

 Cloud NXW Cloud Node NXW Cloud Node NXW Cloud Node

EFPF
Platform

Symphony
Resource
Catalogue

 Cloud Cloud Node
 NXW

Cloud Node
 NXW

Cloud Node
 NXW

EFPF
Platform

Symphony
Event
Reactor

 Cloud NXW Cloud Node NXW Cloud Node NXW Cloud Node

EFPF
Platform

Workflow
and Service
Automation
Platform
(WASP)

 Docker WASP implementation is
composed of a test instance and
also a production instance. They
both use separate MySQL
databases. Both are deployed as
Docker containers, using the
Liferay parent image. ICE_Main

WASP implementation is composed
of a test instance and also a
production instance. They both use
separate MySQL databases. Both are
deployed as Docker containers,
using the Liferay parent image.
ICE_Main

WASP implementation is composed
of a test instance and also a
production instance. They both use
separate MySQL databases. Both are
deployed as Docker containers,
using the Liferay parent image.
ICE_Main

EFPF
Platform

Analytics
Integrator
Platform
(AIP)

 Cloud AWS Cloud AWS Cloud AWS Cloud

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 58 / 60

Annex E: Dependency Table

Context
View

Element
Name Subcomponent EFPF Dependencies External Dependencies

Data Spine Data Spine

Data Spine Integration Flow
Engine (IFE)

Integration Flow Engine EFS, API Security Gateway Apache NiFi

Data Spine Service Registry Service Registry EFS, API Security Gateway, Message Bus LinkSmart Service Catalog

Data Spine Message Bus Message Bus Pub/Sub Security Service RabbitMQ Server

Data Spine EFPF Security
Portal (EFS)

EFPF Security Portal
(EFS)

 Keycloak, REST Services

Data Spine API Security
Gateway

API Security Gateway EFS Apache APISIX, Keycloak, REST
Services, MQTT

Unified
Functionality

EFPF Portal EFPF Portal UI - Data Spine
- Smart Contracting
- Governance & Trust
- Portal Backend
- Marketplace Backend
- PubSubSecurity Backend
Integrated tools:
- Marketplace UI
- Smart Factory Tools and Services
- PubSubSecurity UI

N/A

Unified
Functionality

EFPF Portal EFPF Portal Backend - Data Spine
- Smart Contracting
- Governance & Trust
- Accountancy Service
- NimbleIndexingService

MailJet (MailJet service)

Unified
Functionality

Accountancy
Service

 · eFactory Portal: Login, registration, platform & tool
visit events and related information are sent to the
Accountancy Service when users perform these
activities.
· Base Marketplaces: Payment events realized on
marketplaces of DIGICOR NIMBLE, and VF-OS
projects and related information are sent to the
Accountancy Service when users are redirected to
the base marketplaces from eFactory Portal through
clicking products and perform a successful
purchase.

Elasticsearch, Logstash and
Kibana

Unified
Functionality

EFPF Marketplace EFPF Marketplace UI - Marketplace Backend
- Accountancy Service
- EFS
- EFPF Portal

N/A

Unified
Functionality

EFPF Marketplace EFPF Marketplace
Backend

- Data Spine
- Accountancy Service
- Governance & Trust
- Service Registry
- EFS

N/A

Unified
Functionality

Federated Search Federated Search Engine Apache SOLR (Docker Container)

Unified
Functionality

Federated Search Base Platform Data
Indexing Workflow

Data Spine / Nifi Workflow

Unified
Functionality

Federated Search Federated Search
Service

EFPF Federated Search Engine

Unified
Functionality

Federated Search Federated Search
Frontend Component

EFPF Federated Search Engine

Unified
Functionality

Matchmaking
Service

 · Data Spine / Nifi workflow for periodic data indexing
from base-platforms
· EFPF portal
· User authorization framework to grant access to
matchmaking functionalities

The federated search
implementation has 4 main
components. Backend
components are deployed and
maintained by SRFG in a
dedicated server for eFactory
project from SRFG (server).
Frontend components are
integrated into the eFactory portal
maintained by ASC.
· Federated search engine:
Apache Solr instance providing
search features
· Base platform data indexing
workflow: Nifi workflow to index
base-platform data periodically
· Federated search
microservice: Search REST
microservice deployed in the
SRFG server
· Federated search frontend
component: Angular 8 component
integrated into the eFactory portal

API
Management

Pub/Sub Security
Service

Front End EFPF Portal
EFS
DS RabbitMQ
Pub Sub Backend
Pub Sub Database

API
Management

Pub/Sub Security
Service

Backend EFPF Portal
EFS
DS RabbitMQ

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 59 / 60

Pub Sub Frontend
Pub Sub Database

API
Management

Pub/Sub Security
Service

Database EFPF Portal
EFS
DS RabbitMQ
Pub Sub Backend
Pub Sub Frontend

API
Management

Interface
Contracts
Management Tool

 Message Bus, EFS, Service Registry

API
Management

Service
Registration Tool

 Message Bus, EFS, Service Registry

API
Management

Semantic
Information
Management
(SIM) tool

DevOps,
Maintenance,
& Support

Monitoring &
Alerting Service

DevOps,
Maintenance,
& Support

Monitoring &
Alerting Service

Monitoring Server EFS Prometheus, Prometheus-
Alertmanager, Grafana, Grafana-
Loki, oauth2-proxy

DevOps,
Maintenance,
& Support

Monitoring &
Alerting Service

Monitoring Data
Collectors at Target
Hosts

 cAdvisor, vector

DevOps,
Maintenance,
& Support

Gitlab

DevOps,
Maintenance,
& Support

EFPF
Documentation
Portal

DevOps,
Maintenance,
& Support

EFPF Ticketing
System

Tikki

Essential
Platform-
Based
Functionality

Product
Catalogue Service

 · API Security Gateway
· Service Registry
· EFS

N/A

Essential
Platform-
Based
Functionality

Secure Data Store
Solution

 · Pub/Sub Security Service
· Message Bus
· EFS

MongoDB and InfluxDB. There is a
variant docker image integrating
these.

Essential
Platform-
Based
Functionality

Industreweb
Collect

 Data Spine - message bus + PubSub Security
component. This connector publishes data to the
eFactory broker and will subscribe to the eFactory
Service Registry via a REST interface.

Essential
Platform-
Based
Functionality

TSMatch Gateway Data Spine and Message Bus - integration completed

Essential
Platform-
Based
Functionality

Symphony
Hardware
Abstraction Layer
(HAL)

 MQTT, HTTP

Essential
Platform-
Based
Functionality

Online Bidding
Process

Front-end Interfaces Semantic Framework-CERTH and Agents-LINKS It was based on initially designed
open source UIs by CNET

Essential
Platform-
Based
Functionality

Online Bidding
Process

Essential
Platform-
Based
Functionality

Online Bidding
Process

Matchmaking engine for
EFPF Online Bidding
Process

· Agents and Agent Marketplace from LINKS
Foundation – For online bidding process that is
coming from COMPOSITION and an updated version
will be available to eFactory
· Federated Search Mechanism of EFPF through
Data Spine / NiFi
 EFPF Portal and SSO

Essential
Platform-
Based
Functionality

Business
Opportunity Tool

Team Formation Tool Federated Search, EFS SSO

EFPF Platform Online Bidding
Process

Agent-based
Marketplace

EFS (SSO) Keycloak, Postgres

EFPF Platform Anomaly
Detection Service

 EFS, Keycloak Grafana, H2o

EFPF Platform Customer Trend
Analysis

Elanyo EFPF Behavioral
Predictive Framework
(BPF)

EFS Azure
SQL Server
databricks

EFPF Platform Blockchain &
Smart
Contracting

Blockchain as a Service
(BaaS)

EFS (SSO) The BaaS depends on the base
blockchain network (Hyperledger
Sawtooth nodes) and uses the
EFPF Platform as a front-end to
get users’ registration
information.

EFPF Platform Blockchain &
Smart
Contracting

Blockchain DAML Smart
Contracts

EFS (SSO) DAML v1.17.0
Hyperledger Sawtooth

EFPF Platform Blockchain &
Smart

NIMBLE Blockchain EFS Hyperledger Fabric
NIMBLE

European Connected Factory Platform for Agile Manufacturing – www.EFPF.org

D6.2: Integration and Deployment – Final Report - Vs: 1.0 - Public 60 / 60

Contracting

EFPF Platform Business &
Network
Intelligence

BNIDashboard Accountancy Service
BNI ELK Stack

ELK Stack

EFPF Platform Business &
Network
Intelligence

ELK stack
(Elasticsearch, Kibana)
In development and
testing phase

BNIDashboard
Accountancy Service

ELK Stack

EFPF Platform Visual & Data
Analytics Service

CERTH/COMPOSITION
Data and Visual
Analytics

· Vibration and Fill Level sensors in KLEEMANN
and ELDIA premises. – these sensors are maintained
by CERTH
· Deep Learning Toolkit predictions from LINKS
for Price Forecasting service
· EFPF portal – the component should be available
through the portal interface
· EFPF Security Framework – the analytic services
should be available to specific users with specific
roles

EFPF Platform Deep Learning
Toolkit

 Message Bus, EFS

EFPF Platform Industreweb
Visual Resource
Monitoring Tool

 Data Spine - message bus + PubSub Security Service

EFPF Platform Industreweb
Global

 Industreweb Collect

EFPF Platform Industreweb
Visual Resource
Monitoring Tool

EFPF Platform Risk, Opportunity,
Analysis and
Monitoring
(ROAM) Tool

 · Pub/sub Security Service
· Data Spine / Message Bus & Keycloak
· In the future: SDSS

EFPF Platform Software
Development Kit
(SDK)

Software Development
Kit (SDK) Frontend
Editor

SDK Workspace (https://sdk.efpf.caixamagica.pt/) -

EFPF Platform Software
Development Kit
(SDK)

EFPF Platform System Security
Modeler (SSM)

 EFS SSO

EFPF Platform Symphony Data
Storage

EFPF Platform Symphony
Resource
Catalogue

EFPF Platform Symphony Event
Reactor

 The Event Reactor consumes and produces data
using MQTT and HTTP protocols.

EFPF Platform Workflow and
Service
Automation
Platform (WASP)

 WASP uses the eFactory Security Framework (based
on open-source Keycloak technology) to support
Single-Sign-On functionality to allow eFactory users
to access the platform and make use of all features.
Separate (WASP only) user Registration and user
authentication functionality is also provided through
the native Liferay framework.

Liferay framework. The WASP
platform is composed of a Liferay
component, workflow execution
engine (Camunda) Tomcat
webserver and a MySQL
database. The WASP platform,
with all components, is currently
deployed on the ICE server. All
these components are deployed
as Docker containers.

EFPF Platform Analytics
Integrator
Platform (AIP)

 - -

www.efpf.org

