EFPF. European Connected Factory Platform for
Agile Manufacturing

&
%

European Factory
Platform

WP3: EFPF Architecture

D3.12: EFPF Data Spine Realisation — Final
Report
Vs: 1.0

Deliverable Lead and Editor: Rohit Deshmukh, Fraunhofer FIT

Contributing Partners: FIT, LINKS, CNET, SRFG, ICE, NXW, C2K, SRDC, VLC, UOS-
ITl, ALM, CERTH, ASC, ELN, SIE, CMS, FOR

Date: 2022-06-30

Dissemination: Public

Status: <DBraft | Consertium-Approved | EU Approved>

Short Abstract

This deliverable presents an update to the architecture of the EFPF Grant Agreement:
ecosystem since D3.11: EFPF Data Spine Realisation - I. The 825075
deliverable describes how the Data Spine, together with other
Ecosystem Enablers, enables the creation of and communication in
the EFPF ecosystem. It further details the methodologies for the
integration of tools, services, and platforms with the ecosystem.

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Document Status

Deliverable Lead Rohit Deshmukh, Fraunhofer FIT

Internal
Reviewer 1 Usman Wajid, ICE

Internal
Reviewer 2 Raluca Maria Repanovici, SIE

R Deliverable

Work Package

WP3: EFPF Architecture

L D3.12: EFPF Data Spine Realisation — Final Report
bue Date 2022-06-30

Delivery Date 2022-06-30

Status <Draft | Consortium-Approved | EU Approved>

History

See Annex B.

Status

This deliverable is subject to final acceptance by the European Commission.

Further Information
www.efpf.org

Disclaimer

The views represented in this document only reflect the views of the authors and not the
views of the European Union. The European Union is not liable for any use that may be
made of the information contained in this document.

Furthermore, the information is provided “as is” and no guarantee or warranty is given that
the information is fit for any particular purpose. The user of the information uses it at its sole
risk and liability.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public I/ Vi

http://www.efpf.org/
http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Project Partners:

&1
Qice (G ASCORA
v Information ‘Cansalting - Develspmest - Research
Catalyst
| Services | Data_| Software | innovation

3D ICOMY R CHIRIMME

A\/I Allied Q AUSTRIAN CONTROL 2K

Maintenance STANDARDS total solutions provider

Rl
fortiss Innov LINKS
AIRCRAFT INTERIOR = isms Kl =
NEMTWORKS SIEMENS <

SRDC

-J&T/'oluechoin

fjjf_'?:_f.ff'» VY

KLEEMANN"

yr_—
Z Fraunhofer "ﬂ’

FIT

European Factory

Foundation
HANSE- f{g"\“\ CERTH \
AEROSPACE { Dibys CENTRE FOR RESEARCH & TECHNOLOGY HELLAS HE,”l
% 4 salzburgresearch

gy miloil 1ende LaGe AN

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public "/ vi

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Executive Summary

This deliverable presents the final state of the EFPF ecosystem architecture with focus on
the categorization of the EFPF components into two major types for an easy and efficient
administration; the design and realisation of the Data Spine, the integration and
interoperability and communications layer in the EFPF ecosystem; the interfaces for the
connected tools, systems, and platforms that enable their usage for the realisation of the
use cases and finally, the data model interoperability layer that analyses the alignment of
the data models and dataflows in the pilots and Open Call experimentation scenarios.

This consolidated deliverable reports on the work done in the following tasks in the EFPF
project, solely because all of these tasks perform highly interrelated activities that contribute
towards the establishment of the EFPF federation through the realisation of an open
interoperability mechanism i.e., the Data Spine.

T3.1: EFPF Architecture

T3.2: Design and Realisation of Interoperable Data Spine
T3.4: Interfaces for Tools, Systems and Platforms

T3.5: Data Model Interoperability Layer

This deliverable illustrates the systematic approach taken for the refinement of the
architecture, i.e., the definition of the vision based on the motivation, the identification of the
challenges and definition of requirements based on the challenges, the identification of the
core components called ‘Ecosystem Enablers’ that fulfil these requirements to establish the
EFPF ecosystem. The deliverable describes the updated interfaces for the connected tools,
services, systems, and platforms, that are the building blocks for the realisation of use case
scenarios in the EFPF ecosystem and the data model interoperability layer that aligns the
data models of these tools and specifies how data transformation can be performed to
facilitate the interplay and interconnectivity between the distributed technologies.

One important objective of this deliverable is to provide necessary information to the EFPF
project participants as well as the 3 parties who might be interested in interlinking their
tools, services, or platforms by using the Ecosystem Enablers and making them part of the
EFPF ecosystem. To enable this, the deliverable highlights the integration and interaction
methodologies for various stakeholders such as service providers and service consumers,
etc.

The architecture of the EFPF ecosystem and the Data Spine has been designed with
modularity, scalability, and extensibility in mind to meet the need for incorporating new tools,
services, and platforms in the EFPF ecosystem, with minimum effort, and also for adding
interoperability support for new aspects, such as communication protocols.

This deliverable also summarises the use of the EFPF Ecosystem Enablers and the Smart
Factory Tools and Services from the connected platforms for realising the real-world use
cases from the pilots as well as the Open Call experimentation scenarios.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public IV / Vi

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Table of Contents

O T {011 To 18 ox 1o o 1
0.1 EFPF ProjeCt OVEIVIEWceiiiiiiiiiiiiiiiiiiiiiiiieeeee ettt ettt e e e e e e e e eeeeeeeeees 1
0.2 Deliverable PUrpoSe and SCOPEccuvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee ettt 1
0.3 TArget AUGIENCEcoeiiiiiieiiiieee ettt ettt e e e e e e e e e e eeees 2
0.4 Deliverable CONEXEuuuiiiiiiiiiiiiiiiiiiiiiiiieeiee ettt e e 2
0.5 DOCUMENT STIUCTUI.. ...ttt e e e e e et s e e e e e e e e eeeaan e e e e e eeeeeeenes 3
0.6 DOCUMENT SEALUSvuiiieieeiiiiiieiiiie et e e ettt s e e e e e e e e e e e b e e e e e e eeeeenes 3
0.7 Document DEPENUENCIESoovviiiiiiiiiiiiiiiiiie ettt 3
0.8 Glossary and ADDreVviationS............cuuuviiiiiiiiiiiiiiiiiieeeeeee e 3
0.9 External Annexes and Supporting DOCUMENTSccevvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee 4
0.10 REAAING NOLES.....couiiiiiiii et e e e e s e e e e e e e e e et e e eeeeeeeeenne 4

1 EFPF Architecture UPdate ..o 5
1.1 Motivation and REQUIFEMENTScoeviiiiiiiiie e e e e 5

0 0 R Y/ Y7) o PSP 5
1.1.2 Offerings and Stakeholdersccoooiiiiiiiiiicc e, 7
1.1.3 Challenges, Requirements, and Core COmMpoNeNntscceeeeeeeeeeeeeeennn. 10
1.2 EFPF ArchiteCture CONEXE VIBWuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnennne 13
1.3 EFPF Architecture FUNCHONAl VIEWiiiiiiiiiieieee e 15
1.3.1 Functional Overview of the Ecosystem Enablers...........ccccccceeeeieieeeennnnnn, 16
1.3.2 Functional Overview of the Smart Factory Tools & Services in the EFPF
B COSY S IM .. 25
1.4 EFPF Architecture INformation VIEW.........coooeeeiiiiiiiiiiiiiee e e eeeees 36
1.4.1 High-level Dataflow Patterns in the EFPF Ecosystemccceeee. 36
1.4.2 Federated Search Indexing Dataflows...............cccoooii 38
1.4.3 Aerospace Pilot: Workplace Environment Monitoringcccceeeeeeeeeeen. 39
1.4.4 Furniture Pilot: Analytics & Predictive Maintenance..............ccccoeeeeeeeeenn. 41
1.4.5 Open Call Experiment: DNET LabScccooviiiiiiiiiiie e 42
1.5 EFPF Architecture Development and Deployment VIEeWccccccuvvviiiiiinnnnnnns 43
1.6 Integration Methodologies & Documentation StruCtureccccccvvvvevvnnnnnnnnnnns 45
1.6.1 Integration Methodology for Platform Providers..............ccccceveiiiinn. a7
1.6.2 Integration Methodology for Tool/Service Providers............ccccoeeeeeeeeennnn, 49
1.6.3 Integration Methodology for Composite Application Developers 51

2 Design and Realisation of Interoperable Data Spinecccoooeviiiiiiiiiiiii e, 55
2.1 ViSioN and ODJECHIVESceviiiiiiiiiiiiiiiiiii ettt ettt 55
2.2 REMUITEIMENTS ...ttt e ettt e e e e e e e e e e et tb e e e e e e e eeeeebaaa e e eeeeeeeennes 56
2.3 Interoperability APProach...........couiiiiiiiiiiiiiiiiiii 60
2.4 Design of Interoperable Data SPINe..........oooeiiiiiiiiiiiii e 60

2.4.1 Components of the Data SPINe...........ccccceveiiiiiiiiiiiee 61
2.4.2 Data Spine Architecture and Components’ Interactioncccccceeeee.. 66
2.5 Realisation of Interoperable Data SPINecccoevviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 68
2.5.1 EFPF Security Portal ..o 68
2.5.2 Integration FIOW ENGINe ... 73
2.5.3 APl SECUNtY GaEWAYccevviiieiiiiiee et e e 83
2.5.4 ServiCe REQISIIYccooiiiiiiiiiiie 85
2.5.5 MESSAQE BUS....ouiiieiiiii e 95
2.5.6 SUIMMAIY ..oiiiiiiiee ettt e e e e et e e e e e e e e e aa e e eaaeeenas 102
P ST B =T o] [0) V] 1 0= o | U SSUPPPPRRTN 103
2.7 Testing Scenarios & FrameWOrK..........coouvuuiiiiiiie e e e e e eeenns 105

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public V/VI

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

2.7.1 Integration TeStiNG SCENAIIOSiiieeeeiiieeiiiiee e e e e e e e e e e e eeeaaas 105

2.7.2 Integration Testing Framework ... 105

2.7.3 Performance Testing SCeNArIiOScccouvuuuuuiiiiieeeeeeeeeiie e e e 107

2.7.4 Performance Testing Frameworkcccccccciiiiiiiiiee 107

2.8 Platform/Service Integration & Dataflow through Data Spineccccccevvvveeenee. 110

2.9 Data Spine Usage in Pilots and Open Call Experimentscccceeeiveeeeeeenenns 116

P L V= LD = 1o o D PP 117
2.10.1 Quantitative Evaluationooiiiiiiiiiiiiiiie e 117

2.10.2 Data Spine USAge SUINVEYuuiiiieieeiieeeiiiiiiee e e ee e e et e e e e e eenenannns 119

3 Interfaces for Tools, Systems and Platforms ..., 125
X T I [o1 o o 18 ox 1o o F PP 125

3.2 Interfaces for Tools, Systems and Platformseeiiiiiiiiiiiiiiii e 125
3.2.1 Interfaces for Tools & Services in the EFPF Ecosystem.............c.......... 125

3.2.2 Interfaces for Platforms in the EFPF Ecosystemccccccccvvviiiiininnnnn. 250

3.3 API MaANAGEIMENT.....uiiii ettt e e e e eeaae 261

3.4 Interface Contracts and Their Managementcevvvvviiiiiiiiiieieiieiieeeeeeeeeeee 264
I A 1o {0 Yo [§ T i [o) [P 264

3.4.2 Interface Contract Management TOO!ccccccvvvviiiiiiiiiiiiiiiiiiiiiieeeeeee 265

4 Data Model Interoperability LAYEruiiiiieiiiieeie e 267
S T 1 1o o 1§ o o o SRR 267

4.2 Final Pilot SCeNarios analySiS..........ccoiiiiiiiiiiiiii e e e e e eeanans 267
4.2.1 Working Environment MONITOINNG.........ccovvviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee 267

4.2.2 Production Optimisation Pilot..............cooeuiiiiiiiiiceeeeeiee e 268

4.2.3 Bins’ Fill Level Monitoringcccuvvviiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee 272

4.2.4 MatChmakKingcoiiiiiiiiiiiic e 274

4.2.5 Projects which did not implement interoperability workflows 275

4.2.6 Conclusion from Pilot scenarios analysiS............cccoovvvvviiiiiieeeeeeeeeiiiinn. 276

4.3 Open-Call ProjeCt ANAIYSISuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 277
4.3.1 Open Call LORTEK ...cooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 277

4.3.2 OpeNn Call DNETcoiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 277

4.4 Data Model Interoperability SUINVEYS..........uiiiiiieiiiiiicee e, 278
4.4.1 Pilot SUIVEY ANAIYSIS ...coeiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee et 278

4.4.2 Open Call SUrvey ANAlYSISciiiiieiiiiiieee e 279

4.4.3 Data Model Interoperability Tools ADOptioncceevvvviviiiiiiiiiiiiiieenne. 280

5 Summary of Architectural Considerations & Implications...................evveuieiiiiiiiinennnnns 282
6 Conclusion and OULIOOK...........uuuuiiiii e 285
ANNEX AL HISTOIY .o 287
ANNEX B REIEIENCES 289
Annex C: Data Spine TesStiNg SCENATOS........cooeviiiieeeee e 293

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public VI/ VI

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

O Introduction

0.1 EFPF Project Overview

EFPF — European Connected Factory Platform for Agile Manufacturing — is a project funded
by the H2020 Framework Programme of the European Commission under Grant Agreement
825075 and conducted from January 2019 until December 2022. It engages 30 partners
(Users, Technology Providers, Consultants and Research Institutes) from 11 countries with
a total budget of circa 16M€. Further information: www.efpf.org

In order to foster the growth of a pan-European platform ecosystem that enables the
transition from “analogue-first” mass production, to “digital twins” and lot-size-one
manufacturing, the EFPF project will design, build and operate a federated digital
manufacturing platform. The Platform will be bootstrapped by interlinking the four base
platforms from FoF-11-2016 cluster funded by the European Commission, early on. This will
set the foundation for the development of EFPF Data Spine and the associated toolsets to
fully connect the existing platforms, toolsets and user communities of the 4 base platforms.
The federated EFPF platform will also be offered to new users through a unified Portal with
value-added features such as single sign-on (SSO), user access management
functionalities to hide the complexity of dealing with different platform and solution providers.

0.2 Deliverable Purpose and Scope

The purpose of this document, “D3.12: EFPF Data Spine Realisation - Final Report”, is to
present four different aspects of the EFPF ecosystem: the architecture, the design and
realisation of the Interoperable Data Spine, the interfaces for tools, systems and platforms
in the ecosystem and the data model interoperability layer in the form of four dedicated
sections. First, an overview of the architecture of the EFPF ecosystem with focus on updates
from the previous version of the architecture that was presented in the architecture
deliverable D3.11 (M18) is presented. This includes the identification of the core
components called ‘Ecosystem Enablers’ that enable the creation and functioning of the
ecosystem. Second, the detailed design of the Data Spine, its conceptual components and
their relationships and interactions with each other, the overview, architecture, interfaces,
configuration, and operation of the technologies selected to realise these conceptual
components of the Data Spine, integration, and interaction methodologies for the
stakeholders such as the service providers and service consumers, etc., are elaborated. In
addition, the work done on setting up the automated deployment process and the testing
framework to ensure that the Data Spine DevOps process is as comprehensive as possible,
is highted. Furthermore, Data Spine’s usage in realising the pilot and Open Call
experimentation scenarios is briefly mentioned. Third, the interfaces for tools, services,
systems, and platforms which are the building blocks of the EFPF ecosystem, the
management of their APls and APIs contracts between them are described. Finally, the data
model interoperability layer that aligns the data models of the federated platforms to support
meaningful message exchange and viable business processes that spread across two or
more of the existing EFPF platforms is explained.

The scope of this deliverable includes the updates to architectures of the tools, services,
systems, and platforms in the EFPF ecosystem and their APIs and not their detailed
description and information related to their configuration, deployments, and operation, etc.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 1/296

http://www.efpf.org/
http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

In addition, this deliverable also addresses all aspects related to the design and realisation
of the Data Spine and the data model interoperability layer.

0.3 Target Audience

This document aims primarily at project participants and external entities that are interested
in interlinking their tools, services, and/or platforms using the Data Spine and the other
Ecosystem Enablers and making them part of the EFPF ecosystem. In addition, this
deliverable provides the European Commission (including appointed independent experts)
with an overview of the underlying architecture of the EFPF ecosystem.

0.4 Deliverable Context

This document is one of the cornerstones for achieving the project results. Its relationship
to other documents is as follows:

e D2.1: Project Vision and Roadmap for Realising Integrated EFPF Platform:
Provides an overview of the EFPF project and platform

e D2.2: Platform Interoperation Challenge Report: Describes a small set of business
challenges that involve different usage scenarios across the participating platforms to
kickstart EFPF

e D2.3: Requirements of Embedded Pilot Scenarios: Provide an overview of the pilot
requirements on the federated EFPF platform

e D2.4: EFPF Platform Requirements: Defines the requirements to develop, enhance
and deliver the EFPF ecosystem that is maintained as a living JIRA document with final
submission at M42.

e D3.1: EFPF Architecture-l: Presents the baseline architecture of the EFPF ecosystem
with focus on the EFPF platform and the Data Spine

e D3.11: EFPF Data Spine Realisation - I: presents an update to the architecture of
EFPF, the design and realisation of the Interoperable Data Spine, interfaces for tools,
systems, and platforms in the ecosystem and the data model interoperability layer at
M18.

e D4.13: Smart Factory Solutions in the EFPF Ecosystem - I: Provides a report of the
Tools and Services available within the EFPF Ecosystem that can be used to provide
Smart Factory solutions

e D5.13: EFPF Interfacing, Evolution and Extension: Provides requirements for the
EFPF Ecosystem, its evolution and extension and includes detailed information about
the EFPF Marketplace and Portal

e D6.1: EFPF Integration and Deployment - | Presents the development and
deployment architecture of the EFPF ecosystem with focus on the EFPF platform and
the Data Spine at M12.

e D6.2: EFPF Integration and Deployment- Final Report: Presents the development and
deployment architecture of the EFPF ecosystem at M42.

e D9.1: Implementation and Validation through Pilot-1: Aerospace Pilot

e D9.2: Implementation and Validation through Pilot-2: Furniture Pilot
. ___

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 21296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e D9.3: Implementation and Validation through Pilot-3: Circular Economy Pilot

0.5 Document Structure

This deliverable is broken down into the following sections:

e Section 1: EFPF Architecture Update: Presents an overview of the architecture of the
EFPF ecosystem with focus on updates from the previous version of the architecture that
was presented in the architecture deliverable D3.11

e Section 2: Design and Realisation of Interoperable Data Spine: Presents the design
and realisation of Data Spine — the interoperability backbone of EFPF

e Section 3: Interfaces for Tools, Systems and Platforms: Describes the interfaces for
tools, systems, and platforms — the building blocks of the EFPF ecosystem

e Section 4. Data Model Interoperability Layer: Describes the data model
interoperability layer that aligns the data models of the federated platforms

e Section 5: Summary of Architectural Considerations & Implications: Presents a
summary of architectural considerations and implications based on the requirements and
from the perspectives of the users

e Section 6: Conclusion and Outlook: Concludes the deliverable and mentions the
future work.

o Annexes:
o Annex A: History
. Annex B: References
o Annex C: Data Spine Testing Scenarios

0.6 Document Status

This document is listed in the Description of Action (DoA) as “public”.

0.7 Document Dependencies

This document is the final of the three deliverables that describe the architecture of the EFPF
ecosystem. The first deliverable, D3.1 submitted at Month 9 of the EFPF project described
the baseline architecture of the EFPF ecosystem. The second deliverable, D3.11 submitted
at Month 18 described an update to the EFPF ecosystem architecture, the first report on the
design and realisation of the Data Spine, the interfaces for the federated tools, services, and
platforms, and the data model interoperability layer. This, the third and the final architecture
deliverable at Month 42 provides the final architecture and the final report on the above-
mentioned tasks and aspects.

0.8 Glossary and Abbreviations

A definition of common terms related to EFPF, as well as a list of abbreviations, is available
in the supplementary and separate document “EFPF Glossary and Abbreviations”.

Some terms that are extensively used in this document are defined below:

e Digital Platform: A platform that provides offerings such as digital tools, services and data
and secures access to them using its own Identity and Access Management service.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 3/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
e Ecosystem of Digital Platforms: A federation of digital platforms that enables an easy

creation of cross-platform applications.

e Ecosystem Enablers: The core central components that enable the creation and
functioning of the ecosystem.

e Data Spine: A federated interoperability enabler that bridges the interoperability gaps
between the services of heterogeneous platforms and enables an easy and intuitive
creation of cross-platform applications.

Further information can be found at www.efpf.org

0.9 External Annexes and Supporting Documents

Annexes and Supporting Documents:

o None
0.10 Reading Notes
o None

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 4/296

http://www.efpf.org/
http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

1 EFPF Architecture Update

This section provides an update to the architecture of the EFPF ecosystem from the earlier
versions presented in the previous deliverables D3.1 (M9) and D3.11 (M18). The
methodology used to define the architecture that is based on IEEE 1471 "Recommended
Practice for Architectural Description for Software-Intensive Systems" [Hil00], ISO/IEC/IEEE
42010:2011 “Systems and software engineering - Architecture description” [IEEE11], and
the "Architectural Perspectives" chapter by Rozanski and Woods [RWO05], is described in
D3.1. In order to preserve the context and ensure readability, some information from D3.1
and D3.11 is also included in this section.

1.1 Motivation and Requirements

This section, at first, presents the motivation behind the creation of an ecosystem of digital
manufacturing platforms. Second, it identifies the challenges that need to be addressed in
order to form the ecosystem and enable interoperation and communication among its
components. Third, it identifies the requirements for the central core components and finally,
it maps the pilot requirements to the Smart Factory Tools and Services in the ecosystem
that are used to fulfil them.

1.1.1 Motivation

Manufacturing is one of the key driving forces of the European economy. It creates over 30
million jobs (about 20% of all jobs in Europe) and generates a turnover of €7000 billion in 25
industrial sectors and over 2 million companies, dominated by SMEs [Sim17]. In the digital
age, it is crucial for the manufacturing companies to adopt advanced manufacturing
processes and technologies to remain sustainable and at the forefront of innovation.

With the advent and pervasiveness of the Internet of Things (loT), big data and cloud
computing technologies, digitalization has indeed increased in the factories and enterprises
from the manufacturing domain in the last few years. This opens new opportunities for
companies to collaborate, share their data, reuse resources, find new suppliers, and
optimize their supply chains in order to deliver innovative solutions. However, enabling
collaboration among the manufacturing companies to realise innovative B2B scenarios is
still challenging because of the interoperability gaps between their digital resources such as
tools, services, systems, platforms, and data APIs.

Today’s digital manufacturing platforms (DMPs) are largely heterogeneous, vendor-specific,
functionality-wise fragmented, vertically oriented silos of resources that are locked behind
their private identity and access management solutions. Mass production continues to be
the norm in the manufacturing domain. Each company at any level of the supply pyramid,
as illustrated in Figure 1, has its small number of preferred suppliers usually from its local
cluster. For example, in the aerospace sector, the large OEMs such as Airbus at the top of
the supply pyramid have streamlined their supply chains to include only a small amount of
preferred large suppliers such as Thales, Honeywell, etc., as 1%t tier suppliers. The SMEs
often do not have the necessary digital infrastructure (e.g., ERP systems) needed to directly
become a part of the supply chain network of the large OEMs. In addition, other constraints
such as extensive risk sharing requirements, complex procurement and collaboration
procedures, rules and diversity of IT systems create strong barriers for SMEs to become a
18t tier supplier of the OEMs. On the other hand, the customers’ demands of highly
customised products requires a close collaboration among the OEMs and small but high-
tech SMEs that can deliver such products within a very short time. However, the formation

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 5/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

of such ad hoc collaborative clusters becomes very challenging because of the underlying
heterogeneity of available digital resources.

A&)rigna Equipment Manufacturers
Tier 3 Parts Supplier Companies

Figure 1. Supply Pyramid

In the furniture manufacturing sector, the companies are under pressure to meet the market
demands of highly customised products. The new business models require tools for
facilitating search and selection of suppliers and/or products with certain characteristics,
which allow monitoring of manufacturing processes through supply chain transparency,
coordination of deliveries, and planning of both internal and external activities throughout
the supply network. In the circular economy scenarios, the formation of Closed-Loop Supply
Chains (CLSC) requires collaboration between suppliers, consumers, and prosumers such
as waste producing companies, waste management companies, bio-energy companies,
etc., from different domains as illustrated by the CLSC pilot scenario in Figure 2. Such
objectives of industry 4.0, lot size one and sustainable manufacturing can be achieved by
creating an ecosystem of DMPs that enables the integration of heterogeneous platforms,
interoperability among their services and the creation of cross-platform applications in an
easy way.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 6 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

KLEEMANN

Electricity Waste wood
suppliers producer company
in future network
Bio-energy

company in future
network ELDIA
Waste
MILOIL management
company in future

network

Figure 2. CLSC scenario in EFPF Circular Economy Pilot

The objective of the EFPF ecosystem is to interlink the heterogeneous DMPs and enable
interoperability, communication and sharing of resources in order to enable companies to
make a transition from traditional mass production to a lot-size-one manufacturing. The
primary objectives of the EFPF architecture definition task are to make the design of the
EFPF ecosystem modular, scalable, and extensible and to define the enablers and the
methodologies that are necessary for its creation and for sustaining its operation.

1.1.2 Offerings and Stakeholders

Figure 3illustrates the core stakeholders that interact with the ecosystem and the offerings
provided by them. In general, all the stakeholders except for the Ecosystem Administrator
(Admin) are referred to as users. A user is the representative of his/her company and
interacts with the ecosystem on behalf of the company. The offerings and the stakeholders
are defined below.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 71296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Offerings

Physical .
SaaP Data API Product Solution

Physical
SaaS Dataset Service Product/Service

Platform Catalog

PN <& 4

EFPF Ecosystem &

Ecosystem

AHIIDISITETOr ﬁ R Product/Service/Catalog
Platform Provider
Provider DataAPI Provider System ProCduct/Servsce
DataAPI Consumer Integrator ensUmsr
SaaP Provider Solqtlon Provider
Solution Consumer
SaaP Consumer
SaaS Provider Dataset Provider End User
SaaS Consumer Dataset Consumer

Stakeholders / User Roles

Figure 3. Offerings & Stakeholders in the EFPF Ecosystem
Offerings:

Platform: A digital platform that provides offerings such as digital tools, services and data
and secures access to them by using its own Identity and Access Management service.

Tool/Service/Data:

e Software as a Product (SaaP): Software tools that are sold/given to users as
products and therefore, they generally intend to follow a one-time pricing/licensing
model. E.g., Factory connectors or IoT Gateways such as TSMatch, Symphony HAL,
Industreweb Collect or other products such as Google Chrome browser; Microsoft
Office 2010, etc.

e Software as a Service (SaaS): Software tools/services centrally hosted on cloud,
e.g., GitHub, Skype, Docker Hub, Microsoft Office 365, etc., which generally intend
to follow the subscription-based or access-based (pay-as-you-go) pricing/licensing
model. This includes the tools/services that make processed or value-added data
available to other users over an API.

e Data API: Data provided over an API. E.g., sensor measurements available over an
MQTT topic, weather data available over an HTTP API, etc.

e Dataset: Data provided in the form of a downloadable blob. E.g., historical stock data
downloadable as a CSV file.

e Physical Product: A physical product offered by a company. E.g., a wooden cupboard.

e Physical Service: A physical service offered by a company. E.g., transport and logistics
service.

e Product/Service Catalogue: A catalogue of physical products and services provided by
one or more companies.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 8 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Solution: A solution provided by a company or a group of companies to the requirements
specified by another company or a group of companies. The solution
provision/consumption workflow often involves a tendering mechanism. A tender is an
offer to provide solutions such as carrying out work, supply goods, or another asset, etc.,
at an agreed price.

Entities:

e Application: The final outcome of a defined use case scenario that is used by the end
user, e.g., the pilot applications. A Solution can be an Application or a part of an
Application.

e Teams & Projects: The users of different companies can create groups or ‘teams’ that
work collaboratively on ‘projects’ for the realisation of a Solution or an Application.

Stakeholders / User roles:

e Ecosystem Administrator (Admin): A user who has administrator-level access to the
deployments and the APIs of the Ecosystem Enablers.

e Platform Provider: A user who is the provider of a digital platform.
e Tool/Service/Data Provider:
e SaaP Provider: A user who is the provider of a downloadable SaaP software.
e Service Provider: A user who is the provider of a SaaS software.
e Data API Provider: A user who is the provider of a data API.
e Dataset Provider: A user who is the provider of a downloadable dataset.
e Tool/Service/Data Consumer:
e SaaP Consumer: A user who is the consumer of a downloadable SaaP software.
e Service Consumer: A user who is the consumer of a SaaS software.
e Data API Consumer: A user who is the consumer of a data API.
e Dataset Consumer: A user who is the consumer of a downloadable dataset.

e Product/Service/Catalogue Provider: A user who provides a physical product, a physical
service or a catalogue of physical products and services.

e Solution Consumer: A company seeking solution for its requirements or use cases. This
often involves a tendering mechanism. Therefore, it involves the Solution Consumer
companies inviting tenders for solutions required by them, evaluating the submitted bids,
accepting a tender, facilitating the solution provider to work on the project of delivering
the solution and finally, consuming the provided solution.

e Solution Provider: A company providing solutions to the Solution Consumer companies
such as consultancy services (includes analysis, design), implementation (includes
sensor/actuator installation, application development, etc.), deployment, maintenance,
administration, etc. This often involves a tendering mechanism. Therefore, it involves the
Solution Provider companies looking up the tender invitations submitted by Solution
Seekers/Consumers, submitting tender bids, working on projects emerging from the

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 9/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
accepted tenders to deliver the agreed solution, and finally, delivering the solution to the

Solution Consumers.

e System Integrator: A user who integrates a resource (i.e., a platform, a tool/service, or a
data API, etc., on behalf of the resource providers) with the ecosystem or creates
composite applications using the existing resources. The System Integrator is a general
user role that can be a combination of one/more of the user roles described above. E.g.,
a System Integrator could be a Tool Provider who him/herself integrates their tool with
the ecosystem. The user role ‘Composite Application Developer’ is also associated with
this user role.

e End User: The consumer or beneficiary of the Application that realises the use case
scenario defined by him/her/them on behalf of their company/companies.

In addition to these user roles defined at the ecosystem level, the connected platforms can
have their own internal user roles. When interacting with the ecosystem, their user roles
translate to one/more of the user roles defined above. Moreover, various use case
scenarios, projects and solutions can define their own user roles. For example, the functional
user roles defined in the aerospace, furniture manufacturing and circular economy pilot
scenarios in the EFPF project can be found in the following deliverables respectively: “D9.1.:
Implementation and Validation through Pilot-1", “D9.2: Implementation and Validation
through Pilot-2”7, and “D9.3: Implementation and Validation through Pilot-3”.

1.1.3 Challenges, Requirements, and Core Components

The deliverable ‘D2.1: Project Vision and Roadmap for Realising Integrated EFPF Platform’
defined the vision and roadmap for realising the integrated EFPF ecosystem at M3 and
‘D2.2: Platform Interoperation Challenge Report’ identified the initial interoperation
challenges at M5 of the project. In addition, ‘D2.3: Requirements of Embedded Pilot
Scenarios’, at M5, defined the initial requirements of the three embedded pilot scenarios,
which were added to Fraunhofer FIT’s JIRA as a live document and elaborated further. The
architecture definition task identified the following major challenges that need to be
addressed in order to fulfil these requirements:

e How to integrate the heterogeneous platforms, tools, and services provided by
independent entities to form the EFPF ecosystem and enable communication among
them while ensuring that the system is scalable and extensible?

e How to enable the creation of cross-platform applications in an easy manner, without
making any changes to the existing tools and services?

e What core components are needed to ensure that the ecosystem keeps running and
providing the core functionality even if the connected tools/services/platforms are
disconnected from the ecosystem?

e How to enable the realisation of specific use case scenarios from the manufacturing
domain such as the pilot applications?

To effectively address these challenges in order to fulfil the requirements, the architecture
definition task classified the components required into two major categories:

1. Ecosystem Enablers: The common core components that are required to integrate the
heterogeneous platforms, tools and services provided by independent entities to form
the EFPF ecosystem and enable communication among them while ensuring that the
system is scalable and extensible.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 10/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
2. Smart Factory Tools and Services: The components from the connected platforms that

provide the use case specific functionality required to realise the domain-specific pilot
and Open Call experimentation scenarios. The providers of these components can make
use of the Ecosystem Enablers to manage their development and operations lifecycle.
The System Integrators make use of the Ecosystem Enablers to integrate these
components with the ecosystem, to establish communication with the other components
and to create composite applications.

Section 1.1.3.1 below identifies the requirements that should be fulfilled by the Ecosystem
Enablers, whereas Section 1.1.3.2 maps the pilot requirements to the tools and services in
the EFPF ecosystem.

1.1.3.1 Requirements for Ecosystem Enablers

The Ecosystem Enablers are the building blocks that enable the creation and functioning of
the ecosystem. The EFPF architecture categorises the Ecosystem Enablers into 6 types
based on the functionality they should offer. The requirements for each type are listed below:

1. Data Spine: Identity Federation, Cross-Platform Interoperability & Service Composition

e Creation of a holistic framework for security, privacy, and management of data as
well as users

e Enabling Single Sign-On (SSO) across the connected platforms
e Enabling service-level cross-platform interoperability

e Ensuring that the defined interoperability mechanism enables the ecosystem to be
scalable and extensible

e Methodology and tooling support for an easy creation of cross-platform applications

2. DevOps, Maintenance & Support
e Platform for source code, deployment, and configuration management

e Tools and procedures for infrastructure management such as monitoring and data
backup and recovery routines

e Documentation and support for users

3. APl Management
e Easy provisioning, lifecycle management and discovery of service metadata
¢ Uniformity across and completeness of API specifications
e Delegation of access consent requests directly to the service/data providers

e Management of interface contracts among service providers and consumers

4. Unified Functionality

e Single point of entry to the ecosystem

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 11/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Availability of coherent functionality at the ecosystem-level, e.g., the uniform view of
all the offerings of the connected platforms, a unified/integrated marketplace, etc.

5. Essential Platform-Based Functionality

e |dentification of functionality that is provided by one/more of the connected platforms,
but is necessary for the realisation of multiple use cases from the manufacturing
domain

6. Governance Rules & Trust Mechanisms

e Definition of effective governance mechanisms to enable the ecosystem to reach its
major goals and create sustainable outcomes

e To ensure that the governance mechanisms reflect on the lawful interactions of key
stakeholders, be they owners of the platforms, companies using the platform, or
developers, users, advertisers, economists, computer scientists, governments, or
regulators

Thus, the Ecosystem Enablers provide the core functionality that enables the smart factory
tools, services, and platforms to integrate with the ecosystem, enable communication and
the creation of composite applications to realise various smart factory applications and use
case scenarios such as the pilot applications. Some generic use case scenarios that, for
example, involve searching for product/service supplier companies across platforms, can be
realised directly using the Ecosystem Enabler components. Whereas, for realising the use
case scenarios that involve specific requirements such as predictive maintenance, risk
detection, supply chain transparency, or creation of a customised dashboard, etc., the smart
factory tools and services from the connected platforms can be used.

The next section presents a mapping of the pilot use case scenarios to the smart factory
tools and services.

1.1.3.2 Mapping of Pilot Requirements to the Smart Factory Tools & Services in the
EFPF Ecosystem

From the pilot requirements documented in Fraunhofer FIT’s JIRA as a live document which
were described in the pilot deliverables D9.1, D9.2 and D9.3, various pilot solutions were
defined and implemented. Figure 4 (adapted from the tables in the pilot deliverables)
illustrates the mapping between these pilot solutions and the Smart Factory Tools and
Services. The details from the live document such as the EPICs, the user stories, and their
implementation and validation can be found in the pilot deliverables.

\[o] Solution Relates to Smart Factory Tools and Services
Pilot

S la @ Solution 1a: Furniture Industreweb Collect Factory Connector, FCGMT, Anomaly
Production Optimisation Detection Solution (ADS), Visual & Data Analytics Service, Deep
(Predictive Maintenance) Learning Toolkit (DLT), ROAM Tool, Secure Data Storage

Solution

S 1b | Solution 1b: Furniture Industreweb Collect Factory Connector, FCGMT, Industreweb
Production Optimisation Display
(Operator Error)

S2 Solution 2: Furniture Visual and Data Analytics Tool, Symphony HAL, Symphony Event
Bin Fill Level Monitoring CE Reactor

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 12 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

S3 Solution 3: Furniture WASP
Workflow and Service Aero-space
Automation Platform
S4 Solution 4: Aero-space Base platform Marketplaces, Federated Search, Product
Matchmaking Service CE Catalogue Service,
Business Opportunities Service
S5a | Solution 5a: Aero-space | Industreweb Collect Factory Connector,
Efficient Resources Al Vision Service (FC component)
Management Solutions Secure Data Storage Solution
(Visual Detection)
S5b Solution 5b: Aero-space Industreweb Collect Factory Connector, ROAM Tool

Efficient Resources
Management Solutions
(Stores Monitoring)
S6 Solution 6: Aero-space = TSMatch Gateway Factory Connector, Symphony Platform
Workplace Environment
Monitoring
S7 Solution 7: All domains = Federated Search, Business Opportunities Service
Tendering & Bid
Management
S8 Solution 8: All domains | ROAM Tool
Almende Risk Analysis &
Management (ROAM)

Tool

S9 Solution 9: All domains = Product Catalogue Service
Catalogue Service

S 10 Solution 10: All domains | ValueChain Network Portal (previously known as ‘iQluster’)
Business Network SDK Business Intelligence App
Intelligence

S11 Solution 11: CE Visual and Data Analytics Tool, Deep Learning Toolkit
Data Analytics

S 12 Solution 12: CE DAML, Blockchain DApp (web and mobile application)
Blockchain Application Aero-space

S 13 Solution 13: CE Matchmaker, Agents, Marketplace
Online Bidding Process

S 14 | Solution 14: CE SSM Tool
System Security
Modelling

Figure 4. Mapping of Pilot Requirements to the EFPF Ecosystem Components

It should be noted that in the latest version of the architecture presented in this document,
the FCGMT (Factory Connector Gateway Management Tool) has been replaced by the
Pub/Sub Security Service. The smart factory tools and services mentioned in the table are
described in Sections 1.3 and 3.2.

1.2 EFPF Architecture Context View

Figure 5 presents an overview of the high-level architecture of the EFPF ecosystem that
consists of the Ecosystem Enablers and tools, services, and platforms from various
providers. In contrast to the high-level architecture diagrams from the previous deliverable
D3.11, the architecture in Figure 5 extends the central box of Data Spine to include more
components which are collectively called as ‘Ecosystem Enablers’. The Ecosystem Enablers
are the core components that enable the creation and the functioning of the ecosystem. In
addition, it consists of separate blocks for tools/services/data APIs indicating that the

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 13/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

ecosystem enables the integration of individual tools and services together with full-fledged

platforms.
3" Party Platforms
L Platform X ‘ Platform Y
\\ \\ 1 / ‘
Ecosystem Enablers @
3" Party Tools/Services e N —

Factories
Factory 1 ‘ Factory 2

| Factory Connector 1 loT Gateway 1

(Saas - Cloud-native) k
> EEITEE
. ;
2 £ [] EFPF Platform
c% Integration Flow Engine g
E SR ederad seren
o
a3) °
EFPF Security Portal (EFS) 2
=
ard Party Tools/Services n y 2]
(SaaP - Downloadable) \ Service Registry J y.
l—] ; & .
[Essential Platform-Based Functionality] Governance Rules &
Trust Mechanisms
o -
T 1) G
3" party Data Providers St E [:]
£a @
o
= T——H =
g o 2
@ | <
_1/.‘

I
|

/ \ \

/ \ !

L || @ \SOS

N

BIGITGR

J’ COMPOSITION
[%f%

Base Platforms

Figure 5. High-level Architecture of the EFPF Ecosystem

The EFPF platform follows the microservices architecture approach in which different
functional modules implement individual functionalities that can be composed based on
specific user needs. In order to implement this approach, all components in the EFPF
ecosystem are prescribed to implement and publish open interfaces, preferably REST
interfaces, allowing the exchange of data.

The EFPF ecosystem is designed considering the federation approach where the distributed
heterogeneous digital manufacturing platforms developed, provided, and managed by
different independent entities permit the creation of added value within the ecosystem. To
enable communication among them, an integration and communication layer, i.e., the Data
Spine that acts as a translator/adapter between them is used. In addition, the rest of the
Ecosystem Enablers provide the common core functionality and the digital infrastructure that
is needed for the efficient operation of the ecosystem. Thus, the EFPF ecosystem follows
the Service-oriented architecture (SOA) style. The main elements in the EFPF federation
are:

o Ecosystem Enablers: In the previous version of the EFPF ecosystem architecture,
the Data Spine, that provides the interoperability infrastructure that interlinks and
establishes interoperability between heterogeneous tools, services, and platforms and
enables the creation of composite applications was illustrated as the only central core
entity. In the latest version of architecture presented in this final report, the architectural
vision was extended beyond interoperability and service composition to also include

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 14 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
DevOps for easy deployment, clustering for high availability, automation for better

usability, and components for an efficient infrastructure monitoring, management,
operations, etc.

) Data Spine: This Ecosystem Enabler is the central entity or gluing mechanism in the
EFPF federation. The Data Spine provides the interoperability infrastructure that
initially interlinks and establishes interoperability between the four base platforms:
COMPOSITION, DIGICOR, NIMBLE and vf-OS (see D3.1 for more details). It adheres
to common industry standards and follows a modular approach to enable the creation
of a modular, flexible, and extensible ecosystem. Therefore, it can be easily extended
beyond interconnecting the base platforms to “plug in” new 3 party platforms and
interlink them with the already connected platforms. Figure 5 also highlights the
platform agnostic nature of the Data Spine, i.e., it is evident from the high-level
architecture that as far as interactions with the Data Spine are concerned, there is no
distinction between the EFPF platform and the base platforms or any other 3 party
platforms. Thus, the Data Spine would be independent from the rest of the EFPF
platform. This hypothetically means that even if the EFPF platform were “switched-off”
in the future, the Data Spine would not be affected and therefore would continue to
support an interconnected ecosystem.

. EFPF Platform: This is a digital platform that provides unified access to dispersed
(IoT, digital manufacturing, data analytics, blockchain, distributed workflow, business
intelligence, matchmaking, etc.) tools and services through the Ecosystem Enabler
called ‘EFPF Portal’ that acts as the single point of entry for the ecosystem. The tools
and services brought together in the EFPF platform are the market ready or reference
implementations of the Smart Factory and Industry 4.0 tools from the EFPF project
partners. The collection of enhanced versions of such tools and services from the base
or 3" party platforms deployed together as microservices would constitute the EFPF
platform. These micro-services are made accessible through the EFPF Portal using
the Single Sign-On (SSO) functionality offered by the Data Spine.

. Base Platforms: The EFPF ecosystem is created by initially interlinking the four digital
manufacturing platforms from the European Factories-of-Future (FoF-11-2016) cluster
focused on supply chains and logistics [DMC22]—namely NIMBLE [NIM22],
COMPOSITION [COM22], DIGICOR [DIG22], and vf-OS [VFO22]. These are termed
as the ‘Base Platforms’. The base platforms provide functionality that is complementary
to each other with minimum overlap and hence by interlinking them, the EFPF
ecosystem is able to offer a comprehensive set of business functions.

. 34 Party Platforms: In addition to the four base platforms, the EFPF ecosystem
enables interlinking of other 3™ party platforms that address the specific needs of
connected smart factories. The examples of 3 party platforms that joined the EFPF
ecosystem include ValueChain’s Network Portal platform [VLC22], Nextworks’
Symphony platform [NXT22] and SMECIuster’s Industreweb platform [C2K22].

. 34 Party Tools, Services, and Data: The EFPF ecosystem can also be extended by
connecting individual tools, services, and data APIs, etc. that do not belong to an
existing platform.

1.3 EFPF Architecture Functional View

The EFPF ecosystem architecture categorises the components into two main types
depending upon the functionality they offer as illustrated in Figure 5. The Ecosystem
Enablers provide the core functionality while the other tools and services from the connected
platforms provide functionality that is used to realise specific use case scenarios from the

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 15/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

manufacturing domain. This section provides a functional overview of these components
and detailed description of their interfaces can be found in Section 2.10.1.

1.3.1 Functional Overview of the Ecosystem Enablers

The Ecosystem Enablers are responsible for providing the core functionality that enables
the efficient (re)use of the smart factory tools and services to realise various use case
scenarios regardless of the platforms they belong to. This core functionality is grouped into
6 different categories as illustrated in Figure 6.

Identity
Federation,
Cross-Platform
Interoperability
& Easy Service
Composition

DevOps,
Maintenance, &
Support

Unified
Functionality

Ecosystem

Enablers’
Functionality

Essential
Platform- API
Based Management

Functionality

Governance
Rules & Trust
Mechanisms

Figure 6. Overview of the Ecosystem Enablers' Functionality

1.3.1.1 Identity Federation, Cross-Platform Interoperability & Easy Service
Composition

In the EFPF ecosystem that connects heterogeneous platforms, the services of these
platforms are behind their closed Identity Provides and hence, not directly accessible to the
users of other platforms. Moreover, as the platforms are developed and provided by
independent entities, their services have interoperability gaps at the levels of interfaces,
communication protocols, data formats, data models, etc. Therefore, enabling uniform
access to the cross-platform services by bridging the interoperability gaps among them
becomes a prerequisite to enabling the creation of cross-platform applications. The
Interoperable Data Spine is a federated interoperability enabler that provides these
functionalities in the EFPF ecosystem.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 16 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
Identity Federation & Cross-Platform Interoperability

The Data Spine is the interoperability backbone of the EFPF ecosystem that interlinks and
establishes interoperability between the services of different platforms. It is aimed at bridging
the interoperability gaps between services at the following levels:

Security interoperability: The Data Spine federates the Identity Provides of the
connected platforms, enables SSO among them that facilitates the EFPF ecosystem
users to access the resources of the connected platforms with as single set of
credentials.

Protocol interoperability: The Data Spine supports two communication patterns:

1. Synchronous request-response pattern

2. Asynchronous Pub/Sub (publish-subscribe) pattern

While the Data Spine supports standard application layer protocols that are widely
used in the industry, it employs an easily extensible mechanism for adding support for
new protocols. For supporting lower-level protocols and 10T networking technologies
such as BLE (Bluetooth Low Energy), Z-Wave, ZigBee, LoRa (Long Range), etc. the
Data Spine relies on the Factory Connectors and loT Gateways deployed at the edge.
Data Model interoperability: The Data Spine provides a mechanism to transform
between the message formats, data structures and data models of different services
thereby bridging the syntactic and semantic gaps for data transfer.

Interaction approach interoperability: Even when two different services use the
same communication protocol, there might be a mismatch between their interaction
approaches. For example, one service might make its data available at an HTTP GET
API endpoint, while the other service provides a webhook functionality that expects
data over an HTTP POST endpoint instead. Another example could be that the
services of once platform expect separate steps for discovery and data retrieval, while
the services of another platform combine these steps and provide a direct querying
functionality for data retrieval instead. Such gaps between the interaction approaches
followed by different services are bridged by the Data Spine.

Easy Service Composition

Together with enabling interoperability, enabling the integration of tools and services with
the ecosystem and the creation of cross-platform applications in an easy and effortless
manner is crucial for realising the use cases from agile manufacturing. This way, the existing
tools, services, and solutions can be applied to realising similar use cases in different
domains, contexts, companies, or factories with minimal cost, time, and effort.

The Data Spine:

Defines a standardised approach, methodology and tooling support for enabling the
creation of composite applications in an easy and intuitive manner, while ensuring that
the system remains modular, scalable, and extensible.

Provides the necessary technical infrastructure to ensure that the existing services can
be composed together without (1) any additional local deployments and (2) the need to
make any changes to their code or deployment configuration, regardless of the platform
they belong to, or the location they are deployed at.

Enables collaboration among the users from different platforms or companies for the
creation of applications.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 17 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Data Spine Components
The Data Spine consists of the following components:

e The EFPF Security Portal (EFS) component is responsible for providing a SSO facility
across the ecosystem. It enables the users to access the resources, i.e., tools, services,
and data, of the connected platforms with a single set of credentials. The EFS is realised
using Keycloak.

e The Integration Flow Engine (IFE) component of the Data Spine provides a platform to
the users, allowing them to create dataflows or “integration flows” for interconnecting the
APIs of different services in order to create composite applications. The IFE is realised
using Apache NiFi.

e The Message Bus component is used for mediating the transfer of messages or data
between asynchronous services communicating through the Data Spine. The Message
Bus is realised using RabbitMQ.

e The Service Registry component allows the service providers to register their service
endpoints and metadata such as API specifications. The Service Registry provides a
facility for the service consumers or composite application developers to discover these
services and retrieve their metadata information, which is required to create the
integration flows. The Service Registry is realised using LinkSmart Service Catalog.

e The API Security Gateway (ASG) component acts as the policy enforcement point
(PEP) for the APIs that are exposed by the integration flows created by users. It can also
be used as a permalink reverse proxy endpoint for the services in the ecosystem whose
direct endpoints can change. The ASG is realised using Apache APISIX.

1.3.1.2 DevOps, Maintenance & Support

The Ecosystem Enablers are central components in the EFPF ecosystem that are used by
multiple smart factory tools, services, and platforms. Ensuring their rapid deployment,
integration, version upgrades, efficient maintenance and high availability is of utmost
importance. In addition, providing documentation such as user guides and asking for support
with the integration activities is necessary. With multitenancy support, the same DevOps,
Maintenance and Support infrastructure can also be made available to the providers of smart
factory tools, services, and platforms that have similar requirements.

The DevOps, Maintenance and Support infrastructure provides the following functionalities:
e Development Management

e Source Code Version Control System that enables collaboration among software
development teams

e Project Management features such as grouping and sub-grouping of projects, wiki for
internal documentation and issue tracking functionality for management of technical
issues, milestone management functionality for project planning and release
management at group-level, etc.

e Multitenancy and a fine-grained access control
e Deployment Management

e Continuous Integration (CI), Continuous Delivery (CD), Continuous Deployment
(CD)

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 18 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- __|
e Container Registry

¢ Remote Deployment & OTA (Over-the-Air) Updates
e Infrastructure Management
e Web Server for Reverse Proxying and URL Path Management
e Remote Deployment Management Interface
e Monitoring & Alerting
e Documentation & Support
e Documentation Portal
e Ticketing System for users to report technical issues and get support

The technologies used to realise the DevOps, Maintenance and Support infrastructure are
illustrated in Figure 5. The detailed descriptions of these components can be found in
Section 3.2.1 and also in the deliverables D6.1 (M12), D7.1 (M18), D6.2 (due at M42) and
D7.2 (due at M48).

1.3.1.3 API Management

In the EFPF ecosystem, the services communicate with each other by consuming their APIs.
APIs are the contracts between service providers and service consumers that determine
how a particular service can be consumed. Therefore, the management and discovery of
service APIs is crucial for enabling service-level communication. In the EFPF ecosystem,
the APl management process is concerned with creating, publishing, monitoring, and
securing the APIs of the smart factory tools, and services as well as the Ecosystem
Enablers.

1.3.1.3.1 API Metadata Management: Service Registry & Service Registration Tool

In the interconnected EFPF ecosystem, the services of different platforms need to be
composed together to achieve common objectives. For this purpose, the service consumer
users should be able to discover the available services and consume them without the active
involvement of the service provider users. The Data Spine Service Registry provides the
following functionalities to fulfil these requirements:

e Registration and lifecycle management of service/API metadata for synchronous
(Request-Response) as well as asynchronous (Pub/Sub) services in a uniform manner

e The discovery, lookup, and filtering of services

e Use of industry standard API specifications (spec) to capture service metadata to ensure
the completeness of and uniformity across the API descriptions

The Service Registration Tool, the front end for the Service Registry, provides:
e An easy-to-use GUI for service registration, and

e API spec validation functionality.
1.3.1.3.2 Access Consent Delegation Framework: Pub/Sub Security Service

The EFPF ecosystem consists of several smart factory tools and services that make loT
data available to be consumed by other by publishing it to the Data Spine Message Bus. As

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 19/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
per the traditional approach, the data consumers need to ask permission from the

administrator in order to access this data. The administrators need to check with the data
owners before granting the access permission. Therefore, the process becomes slow and
cumbersome, and the data owners do not have direct control over who accesses their data.
The Pub/Sub Security Service provides the access consent delegation functionality to
automate this process and take the administrator out of the loop, enabling the data
publishers and the potential data consumers to directly communicate with each other.

In the EFPF ecosystem, the users, tools, and services often require the ability to
communicate in an asynchronous fashion. To facilitate these requirements, the Message
Bus (DS RabbitMQ) is offered as part of the Data Spine. However, this presented three main
challenges within the ecosystem:

e How to enable the synchronisation of user accounts, security mechanisms, and
terminologies between the EFS and RabbitMQ

e How to manage the lifecycle of resources (topics, queues, exchanges, binding keys),
vhosts

e How to manage access control for the resources (topics, queues, exchanges, binding
keys), vhosts, users

The EFPF Pub Sub Security Service has been provisioned in the ecosystem that provides
the following functionalities to address these challenges:

e Automated synchronisation of EFS and RabbitMQ accounts.
e Register and manage resources requiring access to the Message Bus.

e Create and Manage Topics in the EFPF Message Bus for resources to publish or
subscribe to.

e Discover and request permission to consumer topics created by other resources in the
tool.

e Manage permission requests to owned topics, including approve, reject, and revoke
operations.

1.3.1.3.3 Interface Contracts Management Tool

APIs serve as the contracts between Service Providers and Service Consumers and a
successful collaboration depends on adhering to them. In some cases, the changes to APIs
can disrupt the communication. The Interface Contract Management Tool (ICMT) is useful
for tracking changes to the APIs of the tools and services in the EFPF ecosystem.
Furthermore, it helps the API consumers in keeping track of the software interfaces they
make use of.

1.3.1.4 Unified Functionality

The EFPF ecosystem consists of full-fledged platforms that have their own portals,
marketplaces, etc., that display their offerings in a variety of formats and interfaces and
enable their sale. The EFPF ecosystem offers the following unified functionalities to its
users:

e Asingle point of entry
e A unified view of all the offerings of the connected platforms

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 20/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Aunified search interface to search for potential collaborators and their offerings by using
custom, user-defined search filters

e A unified accountancy mechanism that enables them to track and trace their purchases
across the platforms

e An ability to collaborate with users regardless of the platforms or companies they belong
to

1.3.1.4.1 EFPF Portal

The EFPF Portal component is the unification point of distributed tools and platforms in the
EFPF ecosystem. It allows the user to access connected tools, base platforms,
marketplaces, experiments, and pilots through a unified interface. The EFPF Portal is
accessible at: https://portal.efpf.org/ and provides the following functionalities to fulfil these
requirements:

e Modern Ul web application
e Keycloak integration for authentication and authorization
e Integration of EFPF Marketplace providing products from connected marketplaces
e Provisioning of Value Proposition pages for improved experience of new users
e Provisioning of Tools and other EFPF-related applications via
e Integration of EFPF Portal Backend providing
e Accountancy Service integration for Telemetry and other event logging

e MailJet integration for User management email notifications

1.3.1.4.2 EFPF Marketplace: Integrated Marketplace & Accountancy Service

Integrated Marketplace

The Integrated Marketplace provides access to products listed on connected marketplaces
at different platforms provided by the EFPF partners. The Integrated Marketplace provides
the following functionalities to fulfil these requirements:

e Integration of Service Registry for retrieving external marketplaces dynamically
e Displaying products in a unified way

e Providing pagination and filtering options

Accountancy Service

Tracking the user behaviour enables businesses to make productive decisions and develop
effective business strategies, since it allows to understand and focus on the needs of the
customers and help to become more user-oriented. Moreover, tracking the money flow
within large business networks and ecosystems and federated digital platforms pose
different challenges that need to be addressed. With these goals in mind, the Accountancy
Service is developed as a part of the EFPF Marketplace Framework and provides insight
into users’ interactions with the EFPF Platform by tracking & tracing the user journey,
particularly any transactions that EFPF users make on different marketplaces linked with the

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 21/296

http://www.efpf.org/
https://portal.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
EFPF Marketplace Framework. The Accountancy Service addresses the abovementioned

requirements by implementing following mechanisms:

e The Accountancy Service collects data about the specific actions of the user to determine
their journey across the EFPF ecosystem. The collected data are then used to carry out
a cashback mechanism which enables to charge the marketplace by a commission
charge or a referral fee where an EFPF user carries out a business transaction.

e The Accountancy Service provides interactive dashboards to visualize collected
information and allows you to pull insights out of user behaviour and transaction data.
The interactive dashboards provide advanced filtering and data analysis mechanisms to
help you to reach specific information in a faster way.

e The Service offers automated tools for preparing monthly reports based on the
accumulated data and generating monthly invoices in accordance with the commissions
calculated for successful transactions that users perform on the marketplaces connected
to the EFPF Platform.

1.3.1.4.3 Federated Search

The EFPF Marketplace combines and integrates a variety of distinct platforms each of which
manages sellable items and companies or manufactures selling those items. The Federated
Search Service acts as the starting point when searching products and manufacturers of all
platform providers with a unified search service combining the searchable information.

For this purpose, the Federated Search Service provides the following functionalities:
e Possibility for bulk updating of platform data with a generic data model
e Provision of a unified search API for product items, companies

e Possibility to manage accompanying meta-information for arbitrary classifications,
customized properties including multilingual naming.

e Provision of this accompanying meta information for user friendly search interfaces.

e Collection of the above data with the Data Spine (Apache NiFi) services consuming
individual service endpoints of the distinct platforms.

1.3.1.4.4 Matchmaking and Agile Networks Creation

For the Matchmaking and Agile Networks Creation, the Federated Search Service collects

both, company data and their responsible contact persons. With the federated search

interface, the team formation process is initiated by selecting two or more companies

(including contact persons) in order to trigger the agile network creation. The Matchmaking

Service offers the following functionalities:

e Re-use the collected company data from Federated Search Service

e Ability to select two or more companies in the Federated Search Interface

e Ability to initiate the team formation process and send invitation to contact persons from
the selected companies

e Visualization of existing teams and their members

Note: business opportunities will be integrated into federated search which allows users to
search for an opportunity and form a team to apply for the opportunity accordingly.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 22 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
1.3.1.5 Essential Platform-Based Functionality

The Ecosystem Enablers, in general, provide the common core functionality that is
necessary for keeping the ecosystem functioning as expected. The EFPF ecosystem body
(EFPF project, followed by the European Factory Foundation — EFF [EFF22]) is the “owner”
of such Ecosystem Enablers and the Ecosystem Administrators are directly responsible for
managing them. Whereas the Smart Factory Tools and Services from the connected
platforms provide the domain-specific and use case specific functionalities and are owned
and managed by their respective providers. However, there are certain sets of functionalities
provided by the Smart Factory Tools and Services that are necessary for the realisation of
multiple use cases from the manufacturing domain. The Essential Platform-Based
Functionality category of the Ecosystem Enablers identifies such functionalities. Based on
the pilot use case scenarios in the EFPF project, the Essential Platform-Based Functionality
category consists of the following functionalities:

e Factory Connectivity: Getting the shop floor data from the sensors and making it
available to rest of the Smart Factory Tools & Services in the EFPF ecosystem is crucial
for realising multiple use case scenarios. The Factory Connectors and loT Gateways
available as SaaP from the connected platforms can be installed in factories and
configured to push data to the Data Spine. The EFPF ecosystem consists of three
different Factory Connectivity tools: (1) Industreweb Collect, (2) TSMatch Gateway, and
(3) Symphony HAL. Further information on these tools can be found in Sections 1.3.2.1
and 3.2.1.5.

e Data Storage: The data collected from the shopfloors and the processed or analysed
data needs to be stored in a database to be made available to other services at a later
point in time. For example, the analytics services make use of the historical data to train
their machine learning models for specific purposes such as anomaly detection. The
Secure Data Storage Solution (SDSS) that provides these functionalities is available as
a cloud-native SaaS service that supports a fine-grained access control as well as a
SaaP software that can be deployed on-premises. Further information on SDSS can be
found in Sections 1.3.2.2 and 3.2.1.6.

e Metadata Management for Physical Products and Services: The EFPF ecosystem aims
to enable a B2B collaboration. The consumers often search for companies as potential
suppliers based on their physical offerings such as products or services. The Product
Catalogue Service in the EFPF ecosystem, described in Sections 1.3.2.3 and 3.2.1.7,
enables the suppliers to create, manage and share catalogues of products and services.

e Tendering and Bid Management. The EFPF ecosystem opens opportunities for
companies to collaboratively work on projects and benefit from each other’s offerings
and capabilities. At times, the matchmaking is not as simple as just searching for
companies and forming teams. Prior negotiations to find the best suited collaborator and
agreements are needed. Also, in some cases, whether the expected solution can be
delivered by any of the companies in the ecosystem is not directly known. The Business
Opportunities tool described in Sections 1.3.2.6 and 3.2.1.10 and the Online Bidding
Process tool described in Sections 1.3.2.5 and 3.2.1.9 provide the Tendering and Bid
Management functionalities for fulfilling such requirements.

1.3.1.6 Governance Rules & Trust Mechanisms

One of the major ingredients to enable a platform ecosystem is the choice, design, and
implementation of governance mechanisms. This is all the truer for multi-sided platforms

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 23 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

such as EFPF, where there are several stakeholders in “producer”, “consumer” and
‘prosumer” roles. Interactions between these actors can be measured, monitored, and
controlled at least partly, via data generated by user activity on the platform. Based on such
data, the platform managers and owners are able to put in place, a system of incentives and
disincentives in order to optimise the platforms utility both for its users and for its owners.
With respect to the EFPF Data Spine, we focus in this report on those governance
mechanisms that are supported technically — as computable functions — by the Data Spine.
A more comprehensive treatment of governance overall, in EFPF is subject to a separate
project deliverable.

In the following, we describe the main set of actors in EFPF, governance issues and
mechanisms that are pertinent to them:

e Manufacturing companies (as primary EFPF Service Customers): These companies
are the primary customers and thus, the raison d’étre for EFPF. All governance
mechanisms should add to the value they derive from EFPF. In the workshops carried
on with user representatives, it was established that their main governance requirements
were trustworthiness of business partners and trust in the platform services, mostly w.r.t
data security. There are different ways in which trustworthiness of companies can be
measured directly or indirectly. In many countries, there are creditor protection agencies
that offer information on likely liquidity of companies. On platforms like EFPF, a
convincing and authentic video-presentation of on-site manufacturing capabilities can
help in assessing work practices. A thorough presentation of PPAP compliance! would
also be an indicator, particularly in the automotive sector.

Data security is of course, of utmost importance for the EFPF platform itself, because it
acts as the security vault for a significant part of every customer’s business information.
EFPF’s security concept starts with identifying provision and Keycloak as the main
access management tool. Access to partner platforms is possible via an EFPF account,
but not vice versa. The platform needs to ensure data confidentiality, integrity, and
availability to legitimate users, at the same time. The actual implementation of EFPF’s
security features directly dependent on the final hosting of the platform since many
security aspects will be dealt with at the level of the cloud provider, leaving mostly the
formulation of the platform specific access rules to EFPF itself.

e Third Party Platforms as external legal entities engaging with EFPF to form a larger
platform ecosystem: The relationship between EFPF and 3" party platforms is ideally
one of complementarity but in some cases, there will be overlaps in services offered and
the question then arises how such a cooperation/competition dilemma can be resolved
by means of governance. In terms of cooperation, Single-Sign On (SSO) has been
implemented to allow access to EFPF services via trusted partner platforms.

e Third Party Tools/Services as external legal entities offering additional utility via EFPF:
3 party providers of tools and services are part of the overall platform offering and
therefore, will be seen as part of the platform by the primary customers. In the case of
problems with their offered services, this is likely to reflect badly on the platform overall.
Hence, monitoring of the customer-facing performance of external tools and services is
desirable, in order to prevent loss of reputation. Direct measures are user satisfaction
ratings whereas indirect metrics could be the service re-use rate (existing customers
coming back) or the customer fluctuation rate (initial customers moving to a similar, other
service).

1 https://lwww.en-standard.eu/ppap-production-part-approval-process/
I ——

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 24] 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Third Party Data Providers as external legal entities offering data as a service via
EFPF: Since EFPF will also provide several data points to their customers, 3 party data
providers may also (like tools and services) impact the platform’s reputation if customers
are dissatisfied. Therefore, there is essentially the same need for monitoring the
performance of their services and data as with external tool providers.

The European Factory Foundation EFF as provider of EFPF with its:

e Integrated Marketplace for any transactions between the above actors
e Matchmaking & Federated Search

e Accountancy Service

e Permissions Dashboard

e Monitoring & Alerting Service

The Integrated Market Place is the obvious source for contract- or payment-related
transactional data among all actors on the platform. Also, the Accountancy Service that
calculates revenue-shares between platform and services, will have access to such
transactional data.

EFF as provider of Smart Factory Services & Data for:
e Business & Network Intelligence

e Data Analytics

e Smart Contracting

e Workflow & Business Process

e Secure Data Storage

With these add-ons, EFF provides added-value services that customers may consume
and pay for, in addition to the basic services available to all users of EFPF. When seen
in conjunction with the marketplace, EFF has (at least) two roles which can rise a
potential conflict: as platform providers, they have a legitimate interest in monitoring third
parties — for security as well as in-good-faith business reasons. As providers of services
where there are also third-party providers present on the platform, there is an issue
concerning a “level playing field” if the service-selling EFF uses data they have gathered
through monitoring their competitors, to then improve their own services and thus, their
relative competitive position. This is what the EU Digital Markets Act would call a
“gatekeeper function” requiring special attention from regulatory bodies.

The Base Platforms can be viewed as external 3" party platform entities. With respect
to governance, they play a minor role now. The only existing marketplace based on one
of the base platforms is b2bmarket [AID22] and this is run as a service to their customers,
by AIDIMME, with (at least currently) a strong focus on Spanish furniture manufacturers.

1.3.2 Functional Overview of the Smart Factory Tools & Services in the EFPF

Ecosystem

This section provides the functional overview of the Smart Factory Tools and Services from
the connected platforms in the EFPF ecosystem.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 25/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

1.3.2.1 Factory Connectors & lIoT Gateways

In order to utilise the functionality of the tools and services data from the numerous data
sources available within, the manufacturing environment needs to be made available. To
achieve this, it is necessary to utilise a Factory Connector or IoT Gateway that can interface
with the specific devices, sensors, and systems the user wishes to gather data from. The
connectors and gateways then communicate with the EFPF Data Spine using a predefined
data model over MQTT.

In EFPF there are three implementations of Factory Connectors & Gateways, each
supporting different connectivity options (including the most widely used industry standards
and systems such as OPC UA, Modbus and propriety PLC protocols), and offering different
functions such as data thresholds the ability to make a calculation or scaling the data values.

The following sections will describe each of the existing Factory Connectors and Gateways
and their functionality, followed by the management tool used to configure the Pub/Sub
communications.

1.3.2.1.1 Industreweb Collect

Industreweb (IW) Collect is a high-speed data engine that interfaces with a range of systems
and devices with the aim of extracting business critical data. The primary objective of IW
Collect is to solve getting data from sources that may prove to be normally difficult or require
a bespoke solution.

The functionalities of the Industreweb Collect Factory Connector are:

e Support for interfacing with diverse range of industrial control systems and open
protocols such as OPC UA, Modbus and Ethernet/IP

e Support for interfacing with legacy equipment via the use of

e Support for interfacing with common data protocols such as SQL, REST, MQTT
AMQP

e High speed logic engine to allow calculations to be made to determine actions to be
carried out

e Raise alerts via SMS or Email

e Cloud based administration tools

¢ Interconnect Collect nodes via MQTT broker

1.3.2.1.2 TSMatch Gateway

TSMatch is a software-based solution that supports the semantic matchmaking of 1oT data
to services. The main goal of TSMatch is to automate the data supply between loT data
sources and services, while satisfying the service needs. For that, TSMatch v1.0 [TSM22]
follows a semantic similarity matchmaking approach, where semantic descriptions of
sensors are matched to semantic descriptions of services, based on an ontological
approach. TSMatch is composed of the following elements:

e TSMatch Engine, currently a server-side component of TSMatch that can reside, for
instance, on an Edge server, on an loT gateway, or even on a Cloud server.

e TSMatch Things Registry, corresponding to a database system (GraphDB) where
Things descriptions are periodically stored.

e TSMatch Client, an end-user application, currently available as an Android apk.
I ——

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 26 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

TSMatch provides the following functionalities:
e Discovery of 10T sensors, via the use of the middleware coaty.io.

e Support for an automated integration of 10T sensors and EFPF services, via the
TSMatch engine and via MQTT.

e Interconnection to the EFPF Data Spine, via a connector developed to support
interconnection between Mosquitto and RabbitMQ.

e Support for MQTT Sparkplug [BNO22] to better support industrial environments.

1.3.2.1.3 Symphony Hardware Abstraction Layer (HAL)

The Symphony Hardware Abstraction Layer (HAL), a tool offered by Nextworks, provides a
unified interface to access devices connected through different low-level bus technologies.
This component implements the lower layer to read/write data points (sensors and
actuators) for a typical Building Management System. The HAL interacts with the devices
using their own protocols, field buses and interfaces, and provides a common interface and
data model to its users. More specifically, HAL provides the following functionality:

e |t abstracts the low-level details of various heterogeneous fieldbus technologies and
provides a common interface to its users

e |t allows the development of modules that can be plugged to the HAL'’s core in order to
extend the available fieldbuses

e |t provides the necessary logic to manage the devices according to their constraints and
proper optimizations (e.g., jam avoidance, timing constraints)

1.3.2.2 Secure Data Store Solution (SDSS)

The Secure Data Store Solution provides mechanisms to capture data messages sent over
the Message Bus and store key values in a Timeseries Database, which is specially
optimized for data queries time-based operations. Subsequently data can be retrieved and
served, allowing for analysis tools to be brought online and trained on historical data. This
has the key advantage to allow for analysis tools to be selected on-demand for a specific,
immediate problem, as opposed to preparing a myriad of analysis tools ahead of time.

The SDSS provides the following functionality:

e Listen to channels on the message bus on behalf of the user from which to extract key
datapoints into a specialized timeseries database.

e Allow users to authorize the sharing of their data with other EFPF users.

¢ Is deployable on-site, allowing data owners to retain physical control of the systems
storing their data.

1.3.2.3 Product Catalogue Service

Product Catalogue Service is a platform for product / service publishing, and it is the main
enabler of the partner discovery phase as it allows companies to introduce themselves to
the EFPF platform with the products they supply and the services they provide. To achieve
this, Product Catalogue Service provides the following functionalities:

e To enable users to find what they are looking for quickly, Product Catalogue Service
offers publishing products with semantically relevant annotations. It makes use of generic

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 271296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
and sector-specific taxonomies as knowledge bases from which relevant annotations

can be obtained automatically given a product category. The main taxonomy used in
Product Catalogue Service is eClass which is an ISO/IEC compliant industry standard
for cross-industry product and service classification. Further, available taxonomies can
be extended with domain-specific taxonomies such as Furniture Taxonomy, Textile
Taxonomy and Aerospace Taxonomy, as well.

e Product Catalogue Service makes use of Universal Business Language (UBL), a world-
wide standard providing a royalty-free library of standard electronic XML business
documents that are commonly used in supply chain operations, as the common data
model since it contains appropriate data elements for catalogue/product management
such as catalogues, products, product properties and so on. Moreover, products and
services as well as catalogues are persisted on a UBL-compliant relational database.

The data and metadata regarding products and services are managed in different ways.
While metadata are kept in a global registry; raw data, which could have varying formats,
are kept in disparate repositories. Maintaining all the metadata in a single repository enables
guerying on products having heterogeneous structures initially. Once a product is identified,
its complete, structured definition can be fetched from the respective repository.

1.3.2.4 Matchmaking Service

The Matchmaking Service in this context is the combination of the Data Collection and Data
Transformation steps with the Data Spine, the storage of the aligned data in the Federated
Search Service and the Team Formation procedures that are provided with the participating
platforms. Thus, the Matchmaking Service can be divided into the following tasks:

1. Data gathering / federation of the relevant information and data alignment for the use
with the Federated Search Service.

2. Provision of stored information with a unified search interface, and
3. Agile Network Creation with selected participants.
For more details, see Section3.2.1.9.

1.3.2.5 Online Bidding Process

Online Bidding Process service provides an automated matchmaking mechanism for
information requests from buyers to suppliers, to execute negotiations and business
transactions automatically via configured agents. It is a web-based application, which
achieves automated negotiations and business transactions between interested
stakeholders by matching the available suppliers for a request, enabling offers submission
as a live auction and suggest the best available offer based on various criteria.

The core functionalities of bidding process are:

e Companies’ representation by virtual agents

e Companies/Agents communication using agents common exchange language
e Semantic modelling of companies and their services

e Semantic Matching of requesters and suppliers

e Live offers submissions during the bidding process or use of predefined ones

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 28 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
e Suggestion of best available offer best on multi-criteria from requester based on

semantics and best score algorithms

e Easy to use interfaces for setting up an agent and participate in the online bidding
process as a provider or requester

1.3.2.6 Business Opportunity Tool

The Business Opportunity Tool offered by the SMEClIuster platform allows Companies to
post Business Opportunities so that they can be searched and allow application bids to be
made by Supplier companies with the required capabilities and accreditations. Business
Opportunities and Companies from the Tool are also aggregated to the EFPF platform
through the Federated Search Component to allow EFPF members to find them based on
keywords.

The functionalities of the Industreweb Collect Factory Connector are:

e Business Opportunity creation wizard to allow procuring companies to post
Opportunities

e Flexible framework to allow the following Opportunity types to be created: Procure
Products, Procure Service, Offer Products, Offer Service, Raw Material / Consumable,
Group Purchase

e “My Applications” dashboard for Procurers to review bid applications

e Opportunity search utility with filters based on keyword, category, and accreditations to
allow suppliers to find relevant Opportunities

e Direct invitation of compatible Suppliers to apply via the company search utility

e Team formations tool for Procurers to communicate and share documents with
Suppliers

1.3.2.7 Business & Network Intelligence

Within the EFPF ecosystem, user journeys between the connected platforms, tools, and
services are tracked and recorded through the EFPF Accountancy Service. This availability
of data presented a novel opportunity to analyse the platform’s traffic to generate and
provide actionable intelligence surrounding not only the trends within the platform, but also
within its ecosystem of connected platforms through the federated search functionality.

The Business & Network Intelligence Service includes the following functionalities to provide
meaningful insights into the platform’s usage:

e Dashboard providing insights into overall usage of the EFPF Platform
e Dashboard providing personalised insights into a user’s usage of the EFPF platform
e Dashboard proving insights in the usage of the EFPF platform by a user’'s company

Within the service, each of the mentioned dashboards provides insights into the following
aspects of the platform’s usage: Logins, Search Events, Payments, Platform Visits,
Tool/Service Visits, User & Company Registrations.

1.3.2.8 Blockchain & Smart Contracting

The EFPF Blockchain and Smart Contracting services provide also provide the means for
applications in the EFPF Ecosystem to incorporate blockchains and smart contracts for audit
. ___

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 29 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
trails for manufacturing and supply chain data, product data traceability and smart

contracting agile networks. It is built on the foundation of blockchain components from base
platforms COMPOSITION and NIMBLE as well as adaptation of more recent advances in
smart contracting. It offers integration of blockchains and smart contracting in three service
levels:

e NIMBLE Blockchain: Integrated process traceability for users of the NIMBLE Platform.

e Blockchain As a Service (BaaS): A blockchain service API for managing identities,
schemas, and data, providing the means to build audit trails for manufacturing and supply
chain data, product passports, identity management and other immutable transaction
logging applications.

e DAML Integration: to build systems with secure multi-party transactions and smart
contracting agile networks, DAML applications can be built and deployed for the EFPF
Ecosystem, integrated with the EFPF Security Portal (EFS).

1.3.2.9 Data Analytics

This section provides a functional overview of the various analytics services in the EFPF
ecosystem.

1.3.2.9.1 Anomaly Detection Service

Anomaly detection allows the users to find uncommon conditions or anomalies in their data
that can provide actionable insight into the errors and non-desired events captured in the
(machine or 10T) data. The anomaly detection solution can help the users to improve the
quality of processes, sport malfunctioning equipment or sport faulty raw material, the
anomaly detection service can help you. Anomaly Detection Service is powered by Al
algorithms that can predict in real time sources of defects. Through the anomaly detection
solution, the users can:

e Create Models for anomaly detection, using clustering or deep learning algorithms.
e Connect models to broker topics to allow for stream data to be processed.

e Create csv datasets by collecting a set number of messages from a topic.

e Test deployed models using a publisher to send messages to your own topic.

e Visualise messages processed by models.

1.3.2.9.2 Visual & Data Analytics Service

The Visual and Data Analytics tool provides a complete solution for analyse and visualize
various types of data. It is a web-based framework to analyse and visualize both industrial
and supply chain data.

The functionalities of Visual & Data Analytics Tool are:

e Connection to a data source for analysis and visualization. The user can select one of
the available connected Databases, (MongoDB, InfluxDB) brokers or to load a .csv file
containing historical data

e Selection of an analytics methods in the case that multiple are available. This depends
on the data source that the user has chosen to load

e Selection of a machine(s) and available sensor(s) as data sources for the visualization

e Selection of the date or range of dates for data visualization

e Selection of various available graph types for the visualization of the analysis

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 30/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

1.3.2.9.3 Deep Learning Toolkit (DLT)

The Deep Learning Toolkit provides an easy way to develop and integrate Deep Learning
(DL) models with the EFPF platform. The DL models supported by the DLT consume time
series data encoded in a JSON formatted OGC-Sensor Things data model. These models
allow users to perform activities such as Predictive Maintenance or Price Forecasting. The
interaction of the user with the DLT consist of:

e Managing the different DL models which the DLT can handle

e Tweak the available models on the edge and then push those to the cloud instance of
the tool

e Collect the metrics to get useful insights about the performances of the models

1.3.2.9.4 Customer Trend Analysis

The Elanyo EFPF Behavioral Predictive Framework (BPF) provides predictive insights for
specific business use cases, initially only for the churn prediction use case. The framework
has been built to potentially serve several use cases in one coherent place, allowing users
to gain predictive insights by providing data resources upon which various models can be
created that utilize the framework’s underlying algorithms. These models can then be used
to score data, thus estimating the probabilities for different events, such as customer churn.

Currently, only one use case is offered within the framework: the Churn Prediction. This use
case is the prediction of potential churners of a company. Machine learning algorithms
analyse the probabilities of customers becoming potential churners and therefore no longer
have a business relationship with the company. The algorithm achieves this by taking
information about the customer (e.g., transaction data over the last 6 month, interactions
with the company website, etc.) and by creating an instance of a model that is able to predict
the outcome of a target variable which defines churned customers. This target variable is
individually set based on the company’s definition of a churned customer. The definition can
vary from customers that stop buying the offered products to customers that stop interacting
with the communication channels. The users of the BPF can later score their latest customer
data in order to predict potential churners with the help of the model that has previously been
created.

1.3.2.9.5 Analytics Integrator Platform (AIP)

The Analytics Integrator Platform, developed by Siemens, is a batch-oriented analytics
workflow creator which allows the EFPF’s users to create their own custom analytical
pipelines containing various modules used in order to parse data, extract meaningful
observations which can be then published in to the main EFPF communication services for
others to use in further domain specific activities. The Analytics Integrator Platform provides
the following functionalities to fulfil these requirements:

e Batch-oriented
e Scheduling and manual triggering
e Docker operator and containers

e Data Spine sink/source interaction

1.3.2.10 Workflow and Service Automation Platform (WASP)
The Workflow and Service Automation Platform (WASP) can be logically split into:

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 31/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Designer components
¢ Runtime components

Together, these components are responsible for allowing users to model multiple
manufacturing workflows to orchestrate the various assets available within a collaborative
framework.

The WASP Process Designer is a visual online reactive canvas allowing a business process
designer to pull in existing models from a library representing the virtualised manufacturing
assets. Each asset may support additional properties that can be defined. The defined
workflow can consist of sub workflows and be saved and versioned within the storage as
(e.g., BPMN 2.0) model definitions.

The WASP Form Designer is a visual online reactive canvas allowing the User to design
forms that can be associated with process User Tasks, and which are displayed to the User
in the Tasks runtime component. (See below).

The WASP Runtime is based on the Camunda open source BPMN engine (Process Engine)
and a number of Ul components (Control Panel & Tasks) that communicate with the Process
Engine via a REST API to provide a visual layer that allows the User to manage processes
& instances, and to directly interact with a process by entering information & making
decisions that control the flow of the process.

Major Benefits:
e Design, execute and monitor multiple processes/workflows on the intuitive interface
e Store and reuse the designed processes/workflows

e Assign responsibilities (manual tasks) either to people in your (virtual) organisation or
to external suppliers in WASP

e Introduce your own REST services in the WASP marketplace and use them in
workflows

e Cloud-based service, used to design, execute, and monitor distributed workflows
EFPF Services Used in WASP:

e EFPF Service Registry

e EFPF Security Portal

1.3.2.11 Software Development Kit (SDK)

The EFPF SDK is a user-friendly visual software module used to promote the development
of applications that use the EFPF services. It includes a visual software development
environment with code management, parsing, execution, and testing functionalities, as well
as reusable libraries, making it easy for users to compose applications. The main purpose
of the SDK is to provide EFPF users a centralised and platform level facility to develop smart
factory applications, either by composing the existing building blocks (e.g., open-source
applications) or by custom development of new applications.

The SDK is composed by four components:

e The SDK core libraries, which centralise endpoints and services available in the EFPF
project, making them available to the developers of new applications

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 32 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- __|
e The SDK Studio, an Integrated Development Environment, based on state-of-the-art
technologies and customised for the development of manufacturing applications using
EFPF

e The SDK Frontend editor, a WYSIWYG editor intended to build the frontends of the
applications being built using the SDK, including standard GUI elements like tabs,
buttons and other interactive elements but also reporting elements such as graphic
charts of multiple types

e The SDK Engagement Hub, a portal which has the purpose to engage the EFPF
application developers into collaboration activities, allowing them to host and
disseminate the source code of their developed applications with the community

1.3.2.12 Risk, Opportunity, Analysis and Monitoring (ROAM) Tool

Many users of the EFPF platform deal with real time processes, such as assembly, supply
chains, and construction, involving machines and sensors that gather data.

Users are then able to process such data using the ROAM Tool by publishing it to the
Message Bus. The data is processed using user-defined workflows, consisting of
configurable recipes, resulting in various outputs. These include useful insights such as
statistics, figures, forecasts, and notifications:

e High customizability of workflows through configurable recipes

e Workflow and recipe definition through frontend, or REST API

e Web Push & Email Notifications

e Workflow and recipe sharing with other users and within company

e Enhanced predictive maintenance by using the output of predictive maintenance tools

e Fully integrated with Data Spine, including automatic topic management using Pub/Sub
Security Service.

e Upcoming integration with Secure Data Storage for historical data

1.3.2.13 System Security Modeler (SSM)

The system security model is a risk assessment tool that is provided as a service to the
EFPF platform.

The SSM automates much of a cyber-security risk assessment. As well as looking for cyber
threats it will also check for compliance (e.g., GDPR). It follows the process of ISO 27005
and thereby supports ISO 27001 compliance.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 33/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

0 Build a model of the assets and relations

Find the threats and their consequences
Both cyber-security and regulatory compliance

ﬂ Calculate risks
(Specified impact) x (Computed likelihood)

y Select security controls from those proposed
Security controls, policies, disable, re-design

:/ Output results
Integrating with other systems

Figure 7. System Security Model Tool Functionalities

1.3.2.14 Industreweb Global

Industreweb Global (IW Global) is a web framework that provides data visualisation, storage,
workflow co-ordination, as well as Administration and Security Management tools for the
Industreweb Ecosystem. Deployed either on the edge device or in the cloud the framework
allows Collect Factory Connectors to be set up, and then deployed with a single click.

The functionalities of the Industreweb Global are:
e Administration of Industreweb Collect Nodes

e Definition of protocol connectors, and data tags to allow real time data access by the
Factory Connector

e Editing of Collect programs to orchestrate data flows at the edge

e Pull deployment over REST to enable Collect Nodes to update their configuration
e Integrated Audit trail so configurations can be edited, deployed, or rolled back

e Security Administration tools to control User access based on Role permissions

¢ Built in Data Monitoring tools to monitor Tag based data published from Industreweb
Collect

e Administration tools for Industreweb Display dashboards

1.3.2.15 Industreweb Visual Resource Monitoring Tool

The Visual Detection and Alerting system makes use of an Industreweb (IW) Collect factory
connector running in the business premises or manufacturing facility to monitor using a
camera and to recognise objects within its field of vision. It uses an edge-based Al
component to detect objects that it recognises from a pre-learnt Al model.

IW Collect then detects these events and based on a set of rules determines what Actions
to perform. This could be to notify by email or SMS, to sound a siren, to light a warning lamp,
push data to the EFPF cloud or display a message on a screen or dashboard.

The functionalities of the Industreweb Visual Resource Monitoring Tool are:

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 34 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
e Detection of objects base on pre-trained model

e Define match accuracy threshold for detection acceptance

e Define match duration to ensure that an object is detected for a solid period of time before
acceptance

e Support for colour matching where distinction based on colour is required
e Publish events to the Data Spine for Business Intelligence applications

e Control factory outputs to support Error Proofing of shopfloor production applications

1.3.2.16 Symphony Event Reactor

The Symphony Event Reactor is capable to create complex rule chains to process data and
events coming from devices in a Building Management System. It allows the user to define
scenarios based on configurable events, which are automatically triggered by monitoring the
remote objects. The main functionalities of the Symphony Event Reactor are:

e Define complex rules through a Blockly-based GUI, using these rules to create complex
scenarios in a Building Management System

e Define alarms to inform the user through SMS, Email and VolP to remotely control the
status of the monitoring system
1.3.2.17 Symphony Data Storage

The Symphony Data Storage provides a solution to store large amounts of data through a
high customizable setup in terms of additional services. The component supports
AMQP/MQTT and REST interfaces for both data ingestion and historical data access. In
terms of backends, it supports PostgreSQL and Elastic Search. The main functionalities of
the Symphony Data Storage are:

e on-the-fly data aggregation and sub-sampling functions on incoming data
o flexible retention and storage quota enforcement policies
e primary / secondary data replication between an edge and a cloud instance

1.3.2.18 Symphony Resource Catalogue

The Symphony Resource Catalogue is a software module used to store types, relations,
and endpoints for a set of 10T objects in a given environment. The module contains two
components:

1. Object Catalogue: A service containing the list of the objects (ID) and a complete
ontology describing their types and relations

2. Object Registry: A service mapping the object IDs to one or more protocol-specific
endpoints to access the object’s interfaces.

The main functionalities of the Symphony Resource Catalogue are:
e REST APIs for objects creation and objects and services registration

e |t contains both static information (what the object is) as well as dynamic runtime
information (e.g., if another node controls an object in a high-availability setup)

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 35/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e It relies on a set of standards (RDS, Apache Jena Triplestore) and it uses oneM2M +
SAREF + SAREF4B + Nextworks’ proprietary protocol as data model.

1.4 EFPF Architecture Information View

This section describes the high-level view of information flow in the EFPF ecosystem. It
explains the implications of the Data Spine’s Federated Interoperability approach and how
it influences the dataflows. It also describes how the data is manipulated and where it is
stored. Some of the data models and alignment of APIs is described as a part of use case
scenarios from the internal Ecosystem Enabler dataflows, pilots, and Open Call
experiments. Further details on the APIs and the data models of components can be found
in Section 2.10.1 and the analysis of dataflows in the pilot and Open Call experimentation
scenarios is included in Section 4.

1.4.1 High-level Dataflow Patterns in the EFPF Ecosystem

The EFPF ecosystem follows the Federated Interoperability Approach to ensure that the
system remains scalable even when multiple new tools, services, and platforms join the
ecosystem. This means that there is no common canonical data model prescribed at the
ecosystem-level. The tools, services, and platforms can choose any standard or
proprietary/custom data models that suit their needs and evolve independently. The Data
Spine provides the necessary interoperability support for creating cross-platform
applications. For realising their use cases, the System Integrators can make use of the
integration flows in the Data Spine to establish interoperability and communication among
the tools and services involved in order to create composite applications. While in other
cases, the Data Spine can be used only for providing security or establishing “security
interoperability” and the data transfer between the services is established in a peer-to-peer
manner. The Ecosystem Enablers provide the generic integration, interoperability, and
functional infrastructure. Therefore, the data models and the dataflows depend upon the use
case scenario to be realised and the smart factory tools and services involved.

Basic High-level Dataflow Pattern

The services in the EFPF ecosystem make use of one or more of the functionalities provided
by the Data Spine to enable communication with each other. In some cases, the Data Spine
is used only security and SSO purposes (getting an access token, token introspection, etc.),
while in other cases it is used for establishing interoperability at protocol and/or data model
levels, message brokering and/or service discovery, as illustrated in Figure 8. Thus, the
synchronous request-response as well as the asynchronous Pub/Sub dataflow patterns are
supported.

Security & SSO

Platform p1 Interoperability & Platform p2

Service Composition
Service s1 »| Service s2

Message Brokering

A 4

Service Discovery

Data Spine

Figure 8. High-level Dataflow in the EFPF Ecosystem

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 36 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Unified Index Pattern

In some cases, the Data Spine is used to collect data from the connected platforms and then
storing it in an ecosystem-level unified index, as illustrated in Figure 9. The data from the
unified index can be made available to other services through an API. The Federated Search
service in the EFPF ecosystem makes use of this pattern, as explained in the next section.

Platform p1

Service s1

Security & SSO

Platform p2 Interoperability & Unified Index

Service Composition
»| Service s4

Message Brokering

Service s2

|

Platform p3 Service Discovery

Service s3 Data Spine

Figure 9. Unified Index Pattern

Reusable “Interoperability Proxy” API Pattern

In some cases, multiple services expect data adhering to a certain standard data model
which is not followed by the data providing service. For example, an IoT Gateway makes
sensor measurements available that follow a proprietary data model, but multiple consumers
expect the data that follows the OGC SensorThings data model. In such cases, the Data
Spine can be used to transform the data and expose an “interoperability proxy” APl endpoint
that can be consumed by multiple consumers, as illustrated in Figure 10. The Production
Optimisation Predictive Maintenance pilot scenario (Section 1.4.4) follows this pattern.

Platform p2
Security & SSO
Platform 1 Interoperability & Platform p3

Y

|

Service Composition
Service s1 »| Service s3

Message Brokering

Service Discovery Platform p4

Service s4

Data Spine

Figure 10. Reusable “Interoperability Proxy” API Pattern

Data Storage

The user data in the EFPF ecosystem is stored in the EFPF Security Portal (EFS) as well
as in the Identity Providers of the connected platforms. The Service Registry stores the
technical metadata of services such as their API specifications, while the metadata of

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 37 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
resources (e.g., tools, Factory Connectors, integration flows) that perform publish or

subscribe operations using the Data Spine Message Bus, is stored in the Pub/Sub Security
Service’s database. The federated/unified metadata from the connected platforms that
consists of platforms’ participants (suppliers/service provider companies) & their value-units
(products/services) is stored in the Federated Search service’s index. The other Ecosystem
Enablers and Smart Factory Tools and Services store data that is necessary for their
operations in their local databases. The sensor measurements data collected from the
factory shopfloors by Factory Connectors or IoT Gateways is typically pushed to the Data
Spine Message Bus, (optionally) transformed through an integration flow and then stored in
the Secure Data Storage Solution (SDSS) from the EFPF platform, as illustrated in Figure
11. This pattern is followed by the Workplace Environment Monitoring pilot as described in
Section 1.4.3.

Security & SSO

Factory 1

Interoperability & EFPF Platform

Sensor 1 Factory Service Composition AP
Connector / loT 5| Secure Data ®
| Storage Solution
Gateway fc1

Sensor 2 Message Brokering

Y

Service Discovery

Data Spine

Figure 11. A Typical Sensor Data Collection and Storage Dataflow

1.4.2 Federated Search Indexing Dataflows

The goal of Federated Search and Matchmaking services in the EFPF ecosystem is to
facilitate EFPF users to find the best suited suppliers and enable them to transact with them
efficiently and effectively. The Federated Search functionality enables search for products
and services across the connected platforms, by using custom, user-defined search filters.
The Federated Search service’s integration flows in the Data Spine contain data indexing/re-
indexing workflows from the connected platforms. Different connected platforms have
different data sources and data models. These heterogeneous data models need to be
transformed and indexed into the common data model that is used in EFPF federated search
index which is an Apache Solr based data model. There are two types of data the Federated
Search service typically retrieves from a connected platform: company data and products
data. These two types of data are indexed into two Solr collections in EFPF federated search
index (party, item). In summary, the Federated Search service’s integration flows contains
the extract-transform-load (ETL) workflows for each individual base platform data to the
EFPF federated search index as illustrated in Figure 12.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 38 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

NIMBLE | —-O
il Data Spine Data Alignment (Nifi) Federated Search
“ Service
Composition -0 "\\ Nifi Frocess O
T g
—————— - Company/ = Chain Company | => Indexing &
- Product Data ~———-T7-— i [i Et * Product Data ~—-®» Service
iQluster -O----—- ® (individual) unified
- H
1”
SMECluster O ¥
JoLT Endpoint
Transformation Security

Figure 12. Federated Search Indexing Dataflows

1.4.3 Aerospace Pilot: Workplace Environment Monitoring

In the aerospace sector, large OEMs such as Airbus and Boing set detailed product
specifications for suppliers. In some cases, certain production steps are only permitted
under very specific and monitored environmental conditions. For example, aerospace paints
may only be processed within a specific temperature range. The overall goal of this pilot
scenario is to ensure that specific parameters in specific production machines and
production environment are analysed in real-time to provide effective decision support.

The pilot scenario involves two dataflows:

e Dataflow 1: Sensing: The first dataflow, illustrated in Figure 13, involves sensing and
data collection and visualisation operations using the federated EFPF smart factory tools
and services. The TSMatch Factory Connector collects the shopfloor from the sensors
installed in the factory premises and publishes it to the Data Spine Message Bus to make
it available to the other EFPF tools. The data is transformed using an integration flow in
the IFE and made available to the Symphony platform’s GUI integrated with the EFPF
Portal. The GUI shows a real-time visualisation of the collected data to the users.

e Dataflow 2: Actuation: The second dataflow, illustrated Figure 14, involves actuation of
the Alarm System. The data collected as a part of the first dataflow is made available by
the Symphony Event Reactor component that compares the reading with a predefined
threshold. If a certain measurement exceeds the threshold value, the Alarm System is
activated to notify the factory managers for taking an appropriate action.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 39/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

EFPF Portal

Service Registry

Registrations of async services with the|
following operations and topics
specified in APl specs:

publish &
subscribe: WOM/OBSERVATION/
NDATA/TSMATCH_WOM_1

publish &
subscribe: WOM/DISCOVERY/
NDATA/TSMATCH_WOM_1/NXW_HAL

Data Spine

Sensors
! | (Temperature and Humidity)

WOM factory premises

Figure 13. Workplace Environment Monitoring Dataflow 1: Sensing

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public

Integration Flow
.

Data Model: HAL DM

Symphony

Platform GUI
iFrame

Operation: subscribe

Topic:
WOM/DISCOVERY/NDATA/
TSMATCH_WOM_1/NXW_HAL

Publish
K

TSM DM

HAL DM

v

Operation: publish

Topic:
WOM/DISCOVERY/NDATA/
TSMATCH_WOM_1/NXW_HAL

A

Subscribe

Integration Flow Engine (DS NiFi)

TSMatch

Operation: subscribe

Topic:
WOM/OBSERVATION/NDATA/
TSMATCH_WOM_1

Message
Broker

(DS RabbitMQ)

(Factory Connector)

Data Model: TSM DM

Operation: publish
Topic:

WOM/OBSERVATION/NDATA/

TSMATCH_WOM_1

40/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

EWOM factoy premises Symphony Platform,

Data Model: HAL DM

Symphony

Operation: subscribe
Topic: NXW/WOM/CMD

Service Registry

ReglsFratlons of_async services with the Message
following operations and topics

specified in API specs: Broker ~
(DS RabbitMQ)

publish & subscribe: NXW/WOM/CMD
subscribe: WOM/DISCOVERY/

NDATA/TSMATCH_WOM_1/NXW_HAL| ?g’:ifjtioni subscribe

WOM/DISCOVERY/NDATA/
TSMATCH| WOM_1/NXW_HAL

Operation: publish

Data Splne Topic: NXW/WOM/CMD
A 4
Symphony Platform GUI Symphony Symphony
(WOM user sets the threshold) Event Reactor HAL
Data Model: ER DM Symphony Platformi

Figure 14. Workplace Environment Monitoring Dataflow 2: Actuation

1.4.4 Furniture Pilot: Analytics & Predictive Maintenance

In this pilot project the Lagrama company wanted to use multiple predictive maintenance
and analytics solutions with their data collected from the shop floor. In order to do so the
company resorted to some solutions available on the EFPF platform and its main
component, the Data Spine.

Since these solutions used different data models the main challenge has been to integrate
those with the data coming from the shopfloor which used a data model of its own. All of the
tools and services in this pilot project used the MQTT protocol so there was no protocol
bridge to cover.

As shown in Figure 15, the data reaches the Data Spine encoded with a property data model
created by C2K. the first operation performed on the data is to scale the values of the
sensors from the raw readings performed on the machine to a set of standard units of
measurement. Once this operation has been performed, using a JOLT processor on NiFi,
the data is published again to a different topic on the Message Bus.

At this point in the pipeline, three tools can already consume this data. The Risk Analysis
Tool, the Visual Analytics Solution, and the Anomaly Detection Solution.

Since the deep learning tool kit uses DOGC sensor things standard data model the scaled
data must be converted to this data model before it can be consumed by the tool. This is
how quite complex transformation, and it happens outside the data spine on a dedicated
micro service. Once this updated data is fetched from the micro services rest API then it can
be published again to the message bus. The data is finally consumed by the deep learning
tool kit and used for making predictive maintenance forecasts.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 41/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

The forecasts made by the deep learning tool kit are done pushed back to the message bus
and consumed by the risk analysis tool directly using the proprietary data model of the deep
learning toolkit and are used for generating notifications about possible breakdowns.

Deep Learning
Toolkit

LINKS

Data Model
OGC-ST

Risk Analysis Tool

| Data | Scaler Translator
from C2K model from C2K model

\ -
Eats \ Integration Flow Engine
=:salmende |
|
Spine to Scaled G2K model to OGG-ST model

) x

v v

Message Broker J

Scaled —)[
C2K Data Model L

Visual Analytics
Solution

A CERTH

C2K Data Model

Anomaly Detectiion
Solution Factay
Connector

& oot e

Sensor on
Lagrama's
machine

Lagrama's
machine

Figure 15. Furniture Pilot: Analytics & Predictive Maintenance Dataflows

1.4.5 Open Call Experiment: DNET Labs

The goal of this open call project is to integrate DNET’s Product Passport service with the
EFPF infrastructure and with a predictive maintenance service already available. The
dataflows are illustrated in Figure 16. In order to demonstrate this integration between this
service and the EFPF platform the readings from different sensors coming from the Metalac
source have been used.

This data comes with a custom proprietary data model and is pushed to the EFPF Data
Spine using the AMQP protocol. The first challenge to tackle has been to bridge the protocol
gap between the DNET service and the predictive maintenance solution since this one uses
the MQTT protocol. To solve this issue a NiFi flow has been developed which subscribes
from that queue and publishes to a similarly named one.

The second challenge was that the DNET services uses a custom data model while the
Deep Learning Toolkit that uses a standard OGC Sensor Things based data model. To solve
the second issue the data was pushed from the Data Spine to a custom micro service
developed for this purpose. The rest API provided by the service allows to perform the
translation process in real time.

Now the transformed data is ready to be sent to the Deep Learning Toolkit using the MQTT
protocol. Once the Deep Learning Toolkit has made predictions using this data, the
predictions themselves are published to the message bus using the MQTT protocol.

Before the end service can consume these predictions, these shall be collected from the
MQTT topic on which they are published and have to be pushed to another AMQP queue

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 42] 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

since that service uses that protocol to communicate. The predictions are finally consumed
by the DNET product passport service and presented to the end users.

Deep Learning
Toolkit

LINKSS

W B

Data Model
OGC-ST

I \ Integration Flow Engine

| Data | Translator
gl " from DNET model
Spine to OGC-ST model

) [}

v v

Message Bus

DNET Data
Model

DNET Platform

DNET Data Collector

R
Sl

LINKS Data Model

Sensor 1 Sensor N

Figure 16. Open Call Experiment: DNET Labs Dataflows

1.5 EFPF Architecture Development and Deployment View

The design goal of the development and deployment architecture for the integrated EFPF
platform (i.e., Ecosystem Enablers) has been to enable EFPF, and later EFF, to perform
continuous integration of the Ecosystem Enablers, manage deployment on partner
infrastructure and release incremental versions of the Ecosystem Enablers for functional
testing. The owners of 3" party tools and services, base platforms and EFPF Platform tools
and services will manage the respective development and deployment of their resources.
The major architectural concerns have been to enable a modular and extensible
infrastructure for the Ecosystem Enablers where new modules and components can be
added, development can be distributed, deployment can be made on premise, cloud or
distributed, and quality attributes like scalability, maintainability and availability are ensured.
The heterogeneous nature of the development organization with many organizations in
different locations, using different tools, had to be considered when designing the
architecture.

The Data Spine has served as the main use case and architectural proof-of-concept when
developing the development and deployment architecture. Stable operation, repeatable
deployment and co-hosting of the Data Spine components has been a primary concern. The
other Ecosystem Enablers have been adapted to the defined architecture.

The development process and codeline organization for the Ecosystem Enablers use the
GitLab tool. It provides code repository, image repository for docker components, agile

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 43/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

development issue management tool, and runs the CI/CD pipeline. Ecosystem Enabler code
is managed by EFPF. There are a few exceptions, but the code for business-critical
components is in the EFPF repository or available as public open-source code in the case
of external components, e.g., NiFi. The EFPF Platform components primarily use in-house
development tools and processes.

Deployment and testing are further covered in Section 2.6 of this document.

Development Environment Test Environment Production Environment
1
Partner Development Server EFPEF Test Server EFPF Production Server
chosystemEnabIeE:I « EcosystemEnabler%tl « EcosyslemEnab\eg
Component Component Component
A
A

Deploy for iterative development Deploy release candidate to test Deploy to production
;' ': Pilot Application ;' I:

EFPF Partner Open Call Experiment

Figure 17. Runtime environment

Development of the EFPF Ecosystem and integration of base platforms started at the same
time as the specification of the development and deployment architecture. The initial
versions of the Data Spine, Portal and other central components were distributed over the
hosting resources of the technical partners, using the available deployment and hosting
processes and resources. This configuration now comprises the Development Environment,
where iterative development, experimentation and proof of technical feasibility takes place.
There are no policies guaranteeing that the deployed version of any component is stable,
ad hoc deployment is allowed, and the configuration of services, network, or security may
change without notice. (However, it has proven to be quite stable.)

The project needed a staging runtime environment where release candidates approved for
production and a stable runtime environment used for external users, Pilots and Open Call
experiments. These are called the Test Environment and Production Environment,
respectively. There is only one production environment, as a limited number of runtime
environments require less effort to manage and support. It was decided to limit Test and
Production hosting to the Ecosystem Enablers, specifically the Data Spine and Portal. This
was to ensure performance efficiency and co-existence by having sufficient resources for
the most business-critical components.

The decision taken was to use on-premises hosting at C2K rather than relying on cloud
resources, e.g., AWS or Azure Cloud. This was motivated by having predictable costs and
a guaranteed continuous environment when transitioning to EFF.

The choice of a common container technology provides maintainability and portability for the
Ecosystem Enablers. The project selected the widely used Docker container technology and
after evaluating Kubernetes, decided on Docker Swarm for container management.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 44] 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
The automated and configurable deployment pipeline together with the container technology

enables EFPF and EFF to switch to cloud hosting or deploy multiple instances of the platform
if this is desired. E.g., the on-premises hosting can be complemented with instances hosted
in the cloud for resource demanding customers.

It was a highly prioritized task to move all Data Spine components as well as the Portal and
Marketplace components to the CI/CD Pipeline and deploy these together on the Test and
Production Environments.

Production Environment

EFPF Production Server ASCORA Server
EFPF-NIMBLE VM SDSS-Alasia VM « EcosystemEnabler» E
Ticketing System
« BasePlatform « EcosystemEnabler» E
NIMBLE Secure Data Store Solution
CERTH Server
EFPF-Prod Cluster VM
R E « EcosystemEnabler» E
Online Bidding Process
{I « EcosystemEnabler»
Unified Functionality
« EcosystemEnabler» FIT server
Data Spine
« EcosystemEnabler» $:|
« EcosystemEnabler» EFPF Dev-Portal
APl Management
« EcosystemEnabler» {I
= temEnabl {I Gitlab
e « EcosystemEnabler»
Monitoring & Alerting Service Product y(':atalog Service {I

Figure 18. The Production Environment (simplified)

The Production Environment hosts the stable versions of the Ecosystem Enablers. This
primarily means the Data Spine and Portal. However, other Ecosystem Enablers can be
hosted there if they implement the CI/CD pipeline and container technology. If they have
high cohesion with the Data Spine and Portal and resource consumption is estimated to be
low and stable, they may be hosted together with the Portal and Data Spine on the same
nodes. Otherwise, a separate virtual machine is set up on the server. Performance efficiency
and reliability for the Data Spine and Portal is the deciding factor when allowing other
components to be deployed in the Production Environment.

The diagrams above (Figure 17 and Figure 18) have been simplified and only Ecosystem
Enablers are shown. The infrastructure and container management tools — Docker Swarm,
Portainer, Nginx - located on the test and production virtual machines with Data Spine have
been omitted from the diagrams. Detailed information on the development and deployment
views is provided in deliverable “D6.2: Integration and Deployment - Final Report”.

1.6 Integration Methodologies & Documentation Structure

The EFPF ecosystem consists of a large number of tools, services, and platforms. It can be
difficult for new users to integrate their tools and/or to create composite applications using
the separate documentations of the available tools, services, and the infrastructure,
especially if they are not homogeneous. To ensure consistency among the documentations

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 45/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

of the Smart Factory Tools and Services, standard templates illustrated in Figure 19 was
followed.

1. Index Page (Overview)
e Introduction, Features, USP, etc.
e High-level architecture
2. Servicel Quickstart Guide
e Getting started
e Hello World
3. Servicel Admin Guide
e How to install, deploy, configure, etc.
e Where to find Docker images or other binaries
4, Servicel User Guide
e How to use/consume
e Functional information
e GUI related documentation
e APl documentation
5. Servicel Developer Guide
¢ How to maintain, enhance, extend, etc.
e Detailed architecture
e Linkto the source code repo
6. Servicel Miscellaneous

e Any other documentation that is not covered in the sections above

Figure 19. Documentation Template for EFPF Ecosystem Components

The documentation for the EFPF components that follows this template was published onto
the EFPF Dev-Portal, which is integrated with the EFPF Portal as shown in Figure 20.

Rohit Deshmukh v

= EFPF Dev-Portal Q C
Dechboord Search .
User Guide 101
Marketplace
Projects Target audience

Search

User Guide 101 This is the starting point of the EFPF Ecosystem User Documentation. This guide is

Data Spine

designed to provide a general overview of the different aspects of the EFPF
UG101 for Tool/Service

. Open Datasets ConsiEners Ecosystem. This page serves as an entrypoint to most users.

IPR for Subcalls UG101 for Composite As a new user, you might have some doubts about how to use or where to access

Application Developers certain components of the EFPF Ecosystem. This guide tries to fill that gap and offers
= [AEHE G101 for a step-by-step procedure to get you ready.
Tool/Service/Data

Documentation

Providers Whenever you feel lost and cannot find information about any component, come back

. UG101 for Platform to this page and you will probably find your answer.
» API Documentation ’
Providers
B User Guide 101 List of EFPF Services Ove FVIE‘W
Accountancy Service - What is the EFPF Ecosystem?

Figure 20. EFPF Dev-Portal

In addition, in order to avoid the users “getting lost” into the documentation and for providing
them with an orientation, a new User Guide (UG) 101 that acts as the starting point of the
EFPF ecosystem user documentation was created. The UG101 acts as the index, describes
the EFPF ecosystem architecture in brief, introduces the core components and the
deployment environments and provides links to the detailed documentation of the
components. In order to provide the current orientation for the users depending upon how
they want to interact with the ecosystem, the UG101 directs them to one of four further

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 46/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

UG101s, based on their user role, as shown in Figure 21. The integration/interaction
methodologies contained in these four UG101s are described in the subsequent sections.

UG101 for

Tool/Service
Consumers

UG101 for

Composite
Application
Developers
User Guide 101

(UG101) Index

UG101 for

Tool/Service
Providers

UG101 for

Platform
Providers

Figure 21. User Guide 101 Documentation Structure

1.6.1 Integration Methodology for Platform Providers

This section lists the integration steps for the ‘Platform Providers’, i.e., the users who want
to connect/integrate/federate their digital platform with the EFPF ecosystem. In the context
of the EFPF ecosystem, the definition of a digital platform is “A platform that provides
offerings such as digital tools, services and data, and secures access to them using its own
Identity and Access Management service”.

Prerequisites and notes:

e You must have an EFPF user account

e Refer to the documentation of the individual components for detailed integration steps
Steps:

1. Data Spine: Enabling Single Sign-On (SSO) Functionality

¢ Integrating/connecting/federating a platform (which has its own private Identity
Provider) with the EFPF Ecosystem means making its tools and services accessible
with a single set of EFPF credentials, i.e., enabling the users of EFPF ecosystem to
access the tools and services of that platform with their EFPF (EFS) user account.

e The EFS acts as the central Identity Provider for the EFPF ecosystem. It federates
the identity providers of all platforms in the EFPF ecosystem in order to enable SSO
functionality.

o Refer to the EFS SSO documentation to federate your platform’s Identity Provider
with the EFS [EFS22].

e Enabling SSO for the platform mainly enables two functionalities:

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 471 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Login with EFPF: These actions would enable SSO and add ‘Login with EFPF’
option to the login page of the integrated platform.

e Access to Service APIs: These actions also enable access to the APIs of the
tools/services in the platform with (authorized) EFPF user accounts.

2. Portal integration
e The EFPF Portal acts as the single point of entry for the EFPF ecosystem.

e An entry with platform’s name, logo, short description, etc., can be added to the
‘Platforms’ page of the EFPF Portal.

e The ‘Value Proposition’ pages can be updated.
3. Marketplace integration

e The EFPF Marketplace retrieves the list of products and services from the
marketplace services of the connected platforms and displays them coherently.

e After SSO is enabled for the platform, its marketplace service can be integrated with
the EFPF ecosystem’s Marketplace.

4. Accountancy Service integration

e The Accountancy Service aims to track and trace a user’s journey across the EFPF
ecosystem and collect data about the transactions they make on different
marketplaces to enable a cashback mechanism

e The Logstash endpoint of the Accountancy Service should be available through the
Data Spine Service Registry

5. Matchmaking/Federated Search integration

e The goal of Matchmaking in the EFPF ecosystem is to facilitate EFPF users to find
the best suited suppliers and enable them to transact with them efficiently and
effectively.

e The Federated Search functionality enables search for products and services across
the connected platforms, by using custom, user-defined search filters.

e The metadata of the newly connected platform’s participants (suppliers/service
providers) & their value-units (products/services) can be added to the Matchmaking
service’s index.

6. Data Spine: Registration of Services / APIs

e The technical metadata of the Services and their APIs (OpenAPl (Swagger) or
AsyncAPI specs) can then be registered to the Data Spine Service Registry, so that
the potential service consumers can discover these services and retrieve their
technical metadata such as the API endpoints, the API specs, etc., which are needed
for consuming them directly or through the integration flows.

7. Use of other Ecosystem Enablers

e The use of other Ecosystem Enablers such as the depends upon use cases involving
service-level integration/communication. E.g., if your use case involves Pub/Sub
communication, you can use the Data Spine Message Bus, if you need an SCM and
CI/CD pipelines, you can use the DevOps infrastructure, if you need a coherent listing
of the ecosystem offerings, you can use the Federated Search Index APIs, etc.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 48/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

1.6.2 Integration Methodology for Tool/Service Providers

This section lists the integration steps for the Tool/Service/Data Providers, i.e., the users
who want to integrate/provide their tool/service/data, that does not have an associated
Identity Provider (IdP), as a part of the EFPF ecosystem. The Tool/Service/Data Providers
can be of different types as explained in Section 1.1.2 and the steps for each type are listed
below.

Prerequisites and notes:
e You must have an EFPF user account
e Refer to the documentation of the individual components for detailed integration steps

e The central, core services called ‘Ecosystem Enablers’ are hosted centrally on the EFPF
servers. The rest of the smart factory tools, services and platforms are self-hosted by the
respective providers on their servers, and they connect to the EFPF ecosystem through
the Ecosystem Enablers.

Steps:
SaaS Providers:
1. Deployment
e Deploy your tool/service on the servers managed by you

e The EFPF DevOps infrastructure can be used for development, deployment, and
operational management

2. Single sign-on (SSO) - Authentication and authorization for request-response APIs (if
applicable)

e Your tool’s interfaces (GUI/APIs) must be accessible using EFPF user accounts

e If your tool offers a GUI, add functionality to it to redirect to the EFS login page (if the
user is not logged in already) for authentication

e This will also require registration of a new client for your tool in the EFS Keycloak. To
do that, send an email to the EFPF Support Team with the details of the client to be
created.

e Configure your tool’'s GUI to use the OAuth2.0 Authorization Code Grant Flow to
request an Access Token from the EFS Keycloak

e Use this access/bearer token to access the tool’'s API

¢ If your tool offers only an APl and no GUI, you can assume that the user who wants
to access the API is already in possession of an access token

e Add functionality to your tool to perform authentication for incoming APl access
requests. This can be done in various ways:

e using a proxy route/endpoint in a local instance of Apache APISIX,
e using a Policy Enforcement Point (PEP) embedded into the tool,

e using an external library integrated into the tool that takes care of authentication
(e.g., Keycloak client adapters, LinkSmart go-sec, Quarkus library),

e using a locally deployed proxy microservice that performs authentication (e.g.,
oauth2-proxy), etc.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 49/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- __|
e EFS Keycloak’s public key can be retrieved from https://<Prod environment EFS

Keycloak URL>/auth/realms/<realm name> (realm name would be either 'efpf or
‘master’).

e Add functionality to your tool to perform authorization for incoming API access
requests

3. Authentication and authorization for Pub/Sub APIs (if applicable)

e Use the Pub/Sub Security Service dashboard from the EFPF Portal to get credentials
for the Data Spine Message Bus (DS RabbitMQ) and to get permissions to
publish/subscribe to topics/queues in DS RabbitMQ

e Configure your tool to publish/subscribe to DS RabbitMQ

e The users who want to subscribe to your topics can make use of the Pub/Sub Security
Service dashboard to ask for access, and you can see and approve/reject the access
requests using the dashboard

4. Service/API registration
e Register your tool/service’s APIs (including Pub/Sub APIs) to the Service Registry
5. Data enrichment (if needed)

e If you want to offer enriched data or data conforming to some other data model
(e.g., making OGC SensorThings compliant data available over another API in
addition to the proprietary data model served by your tool/service’s API) to the
potential service/data consumers, you can use the Data Spine Integration Flow
Engine (DS NiFi)

SaaP Providers:
1. Tool Provision

e Make the tool artifacts such as the binaries or source code downloadable to
authenticated and authorized users, or publicly (e.g., if free and/or open source)

e Publish the documentation for the tool such as admin, developer, and user guides,
including the API specifications

2. Advertise

e Advertise your SaaP tool/service on the EFPF Portal/Marketplace to enable
sale/discovery

Data Providers/Publishers:
1. Search for a tool (if needed)

e Search for a tool (e.g., a Factory Connector / an loT Gateway) on the EFPF
Portal/Marketplace

2. Get the tool (if needed)
e Purchase/download the tool using the link from the EFPF Portal/Marketplace
3. Deployment

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 50/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Deploy your tool on the servers managed by you (e.g., on factory premises)

e You can follow the admin guide of the tool from the EFPF Dev-Portal for deployment,
initial setup, and administration

4. Collect data

e Connect your tool to data sources in order to collect data. E.g., connect to sensors to
collect shop floor data.

5. Authentication and authorization for request-response APIs (if applicable)
e Same as step (2) for SaaS Providers above

6. Authentication and authorization for Pub/Sub APIs (if applicable)
e Same as step (3) for SaaS Providers above

7. Service/API registration
e Same as step (4) for SaaS Providers above

8. Data enrichment (if needed)

e Same as step (5) for SaaS Providers above

1.6.3 Integration Methodology for Composite Application Developers

This section lists the integration/interaction steps for the Composite Application Developers,
that is, the users who want to create applications that use the existing tools/services from
the EFPF Ecosystem using the Data Spine. If a tool/service consumer expects data adhering
to a different data model than what the tool/service provides, she/he can make use of Data
Spine (DS) NiFi to create an integration flow (i.e., a workflow/dataflow) that uses the built-in
data model transformation tools (e.g., Jolt, XSLT, ExecuteScript, etc. Details. DS NiFi
provides an intuitive drag-and-drop GUI to create integration flows easily. An overall
flowchart of the steps is illustrated in Figure 22.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 51/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

o
l

[Setup your account]

Retrieve AP information of
{ Gé,t:g:— asccess to;e; Vllig:e]—)[needed Services via the 1
scurity Porta Service Reglqws REST API

Get permission from the EFP| T, Develop your composite
[Suppon Team to access NlFl]—{ Log in to NiFi's GUI H Get familiar with NiFi H application in NiFi }

Do you want
fo be able o retrieve
information from your
application?

You need to register your
HTTP API endpoint as a
Service/AP to the Service

Use the Pub Sub Security
[Service to register iFlow, create
topic, and request DS
RabbitMQ credentials

via Pub/Sub

or HTTP endpoint? Pub/Sub

Registry and the AFI Security
Gateway will automatically
create a secure proxy endpoint

Publish your data

Update the Service

Registry

| Create a JSON description |
of the Service

A J

Ask admin role for the Service
Registry

Y

Get an access token via the
EFPF Security Portal API

Register/Update Service via
the Service Registry API

(Check that your Service was

added via the Service
Registry APl

Figure 22. Flowchart of Integration Steps for Composite Application Developers

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 52 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
Prerequisites and notes:

e You must have an EFPF user account
e Refer to the documentation of the individual components for detailed integration steps
Steps:

1. Setup your EFPF account

2. Get an access token via the EFPF Security Portal (EFS) API

3. Retrieve the needed information from the Service Registry: Use the Service Registry
REST API to search for the existing services you want to use and retrieve the needed
data.

4. Get permissions to access NiFi: Get the necessary permissions to access NiFi. To
create Integration Flows in DS NiFi, a collaboration space called ‘Process Group
(PG) would be given to you. You would be given admin privileges for your PG
enabling you to not only create and execute integration flows, but also give other
users access to your PG in order to collaborate.

5. Log in to NiFi: After getting the necessary access permissions, log in to NiFi’'s GUI.
To develop your application that uses the existing services in the EFPF Ecosystem,
you will need to create integration flows using the drag-and-drop GUI of the
Integration Flow Engine (NiFi).

6. Get familiar with NiFi tool: The Integration Flow Engine of the DS is realised using the
Apache NiFi dataflow management tool. To get familiar with Apache NiFi, take a look
at the provided examples [EX122, EX222].

7. Develop your composite application using the existing services: This is the core part
of the work to be done. This is where you have to create one or more integration flows
to implement the application logic in NiFi. NiFi provides built-in processors to
accomplish various tasks with ease, e.g., for data transformation to achieve
interoperability at Data Model level, it provides processors such as Jolt,
TransformXml (XSLT), ExecuteScript, etc. To easily create integration flows, you can
refer to the example integration flows available in the same instance of NiFi you are
using. Inside the ‘p1’ Process Group in NiFi you will find another Process Group called
‘Examples’. This Process Group contains some simple, most commonly used
integration flows.

In case you need to make some information from your application accessible from outside
of NiFi (i.e., you take on the role of a Service Provider), you need to follow the next steps,
depending on how you plan on doing this. You have two options:

e Using Pub/Sub: You can make information from your integration flow in NiFi accessible
from the outside via the DS Message Bus (RabbitMQ) using MQTT/AMQP.

1. Use the Pub/Sub Security Service dashboard: Use the Pub/Sub Security Service
Dashboard from the EFPF Portal to get credentials for the Data Spine Message Bus
(DS RabbitMQ) and to get permissions to publish/subscribe to topics/queues in DS
RabbitMQ. Follow the Pub Sub Security Service Quickstart Guide for steps on how
to use the Pub Sub Security Service.

2. Publish your data: In your integration flow in NiFi, publish your data to RabbitMQ with
the configuration details and credentials provided by the Pub Sub Security Service.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 53 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

3. Update the Service Registry: It is recommended to register the new Pub/Sub API to
the Service Registry. If the data being published is to be consumed by other
companies, the registration is mandatory. Otherwise, if the data being published is
meant to be consumed by the same users who published it or by users in the same
company, it is not mandatory but still recommended to register the API containing
information such as the topic name, payload syntax, etc., to the SR as it would be
useful in the long run.

e Using your HTTP API

1. You can configure your integration flow in NiFi to expose an HTTP API endpoint that
can be accessed like any other service/API in the EFPF Ecosystem.

2. Register your Endpoint as a Service.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 54 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

2 Design and Realisation of Interoperable Data Spine

This section highlights the vision and objectives for the creation of the Data Spine, explores
the challenges and formulates the requirements that result in the definition of the conceptual
components of the Data Spine. The architectures of these components, the technologies
selected to realise them, are described followed by their DevOps and testing mechanisms.
Then, the service integration and dataflow through the Data Spine are explained and finally,
the usage of the Data Spine in the pilots as well as the Open Call experimentation scenarios
is briefly highlighted.

2.1 Vision and Objectives

The recently increased digitalisation in the manufacturing domain opens new opportunities
for companies to collaborate, find new suppliers, establish value chains and ad hoc
collaborative networks, optimise their supply chains, streamline production processes, and
reuse resources such as tools, services, and data in their platforms in order to create
innovative B2B applications. However, today’s digital manufacturing platforms are largely
heterogeneous with their resources closed behind their Identity Providers. Because of the
interoperability gaps among the platforms, it becomes very challenging to achieve the
objectives of hyperconnected factories, lot-size-one manufacturing and Industry 4.0. The full
potential of the platform resources remains untapped. The already existing and established
tools, services and solutions cannot be used across platforms, contexts, or domains. The
individual platforms can provide only a limited set of functionalities and in order to avall
extended functionalities, the users must join multiple platforms and deal with the
interoperability gaps themselves. As the reusability is limited, the cost of joining the platforms
increases, barring the entry of SMEs which are considered strong drivers of innovation and
are crucial for realising the objectives of agile manufacturing. Therefore, creation of an
ecosystem of such heterogeneous digital manufacturing platforms that enables
interoperability, and an easy creation of cross-platform is needed.

The EFPF ecosystem consists of distributed, heterogeneous digital platforms, tools, and
components provided and hosted by independent entities. The technical features, including
its interfaces, protocols, data formats, data models, and identity and access management
mechanisms, etc., differ significantly from each other, thus making a direct communication
between EFPF services is challenging. There could be many different ways to address this
problem — one such way could be to design standardized APIs based on the identification
of common standards and abstractions and ask the Service Providers and the Service
Consumers to implement specific connectors/plugins, in order to align their proprietary APIs
to these standard APIs and enable communication. However, such approaches are not
desirable as they need significant modifications to the existing tools, services, systems, and
platforms that need to communicate with each other, among other shortcomings. Hence, a
novel solution enabling an interoperability and communications layer that acts as a
translator/adapter between these heterogeneous tools, services, systems, and platforms,
and providing data handling, routing capabilities and APl adaptation functionalities is
needed. The Federated Interoperability Enabler, Data Spine, is designed to address these
challenges. The Data Spine also aims to make the EFPF ecosystem scalable and
extensible, so that more 3" party tools, services, and platforms can join the ecosystem. The
next section identifies the challenges and formulates the requirements that guide the design
of the Data Spine.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 55 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

2.2 Requirements

In this section, the challenges in creating an ecosystem/federation of digital platforms that
must be addressed by the Data Spine are identified. From each challenge, a requirement is
formulated. To fulfil each requirement, a component is defined. These components become
the building blocks of the Data Spine.

The lack of cross-platform interoperability is a major roadblock in the creation of an
ecosystem of digital platforms to enable an easy creation of applications using services from
multiple platforms. Interoperability gaps exist between the services of heterogeneous
platforms mainly at the levels of security mechanisms, communication protocols, data
models, data formats, data values, interaction approaches, and interaction and
communication patterns, etc., as illustrated in Figure 23.

Data Formats

Protocols Data Models
| Servicel | X g Service2
Service Provider) . Data Service Consumer
|dentity Providers
Platform 1 Platform 2

Figure 23. An lllustration of Interoperability Gaps between the Services of Digital Platforms

Challenge 1) Security interoperability: The services of each digital platform are behind their
own, closed Identity Providers and a user needs to get user accounts for multiple platforms
to access their services.

Requirement 1: The users should be able to seamlessly access tools and services
from different platforms using a single set of credentials.

Solution: This challenge is addressed by using a component called ‘EFPF Security
Portal (EFS)’ that federates the Identity Providers of the platforms in the ecosystem.

Challenge 2) Protocol and Data Model Interoperability and tooling support for an easy
service composition: The interoperability gaps between services of heterogeneous platforms
in the ecosystem prevent cross-platform service-level communication.

Requirement 2: It should be possible for users to create cross-platform
applications using the existing services that may use different communication
protocols and data models, without making any changes to them.

Requirement 3: The users should not be required to deploy and maintain
additional components on their self-managed servers.

Requirement 4. The creation of cross-platform applications should be possible
easily and intuitively, with minimal coding effort.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 56 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- 0000000000000
Requirement 5: It should be possible for users/developers from the same or

different platforms/companies to collaboratively create composite applications.

Solution: This challenge is addressed by using a component called ‘Integration Flow
Engine (IFE) that provides a low-code development environment for the creation of
composite applications.

Challenge 3) Support for asynchronous Pub/Sub communication pattern and messaging
protocols

Requirement 6: The ecosystem should not only support message-based
communication, but also enable the composition of tools/services that use the
messaging pattern.

Solution: This challenge is addressed by using components called ‘Message Bus
and ‘Integration Flow Engine’ that support Pub/Sub messaging pattern and protocols.

Challenge 4) Service/API discovery and metadata

Requirement 7: The users who create cross-platform applications using the
existing services need a mechanism for discovering the existing services and
retrieving their technical metadata such as the API specifications.

Solution: This challenge is addressed by using a component called ‘Service Registry’
that provides a mechanism for lifecycle management and discovery of service/API
metadata and endpoints.

Challenge 5) Decoupling of application logic and policy enforcement and permanent
hyperlinks

Requirement 8: The users should be able to easily secure the HTTP-based APIs
of their integration flows and the Ecosystem Administrators should be able to
secure the APIs of the Data Spine components.

Requirement 9: The services that do not have fixed/permanent API endpoints,
should still be discoverable and accessible to the consumers.

Solution: This challenge can be addressed by using policy enforcement points
embedded into the components or by using a component called ‘APl Security
Gateway (ASG)’ that intercepts incoming requests to component APIs and enforces
access policies with the help of the Data Spine Security Portal. In addition, the ASG
can also provide permanent reverse proxy endpoints for the services that do not have
fixed/permanent API endpoints.

Additional requirements:

o Federation approach: The ecosystem should follow a federation approach, enabling
‘on-demand” interoperability between different tools/services, i.e., when required by a
use case. No common data model or format should be imposed, so that there is no
overhead on the system administrators of maintaining such a complex canonical model

. ___

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 57 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
and on the services to understand it and adhere to it. This is further explained in Section

2.3.

o Agility and flexibility: The ecosystem should allow tools/services to use neutral APIs,
which are not strongly tied to any specific implementation. This will allow them to upgrade
their APIs without any dependency concerns, thereby giving them the flexibility to evolve
independently. The Data Spine should provide an intelligent and flexible infrastructure to
align APIs “on-demand”, by creating workflows or “integration flows”.

e Usability and multitenancy: The Data Spine should provide an intuitive, low-code
development environment to align the APIs of services and enable communication
among them. It should be possible for the system integrator users to collaborate, but at
the same time to limit access to their integration flows, when required.

« Built-in functionality and tool/service integration effort: The Data Spine should take
care of the boilerplate code for protocol translation, routing, and mediation, etc., and
facilitate the system integrator users for integrating their services by configuring only the
service-specific parts of their integration flows with minimal coding effort.

« Integration effort: No local deployments of any Data Spine components should be
needed to integrate 3 party tools, services, or platforms with the ecosystem.

« API management: The system integrator users need to refer to the technical
specifications of service APIs to create integration flows. The Service Registry
component of the Data Spine should ensure uniformity across and completeness of the
API specifications.

« Modularity and extensibility: The architecture of the Data Spine should be designed
with modularity and extensibility in mind to meet the need for incorporating new tools,
services, and platforms into the EFPF ecosystem, with minimal effort.

o Performance, scalability, and availability: As the Data Spine is a central entity of the
platform ecosystem, it should be highly performant and should support high throughput.
The performance critical components of the Data Spine should have the capability to
operate within a cluster to support high availability.

e Maintainability: In the view of maintainability, the Data Spine should facilitate the
creation of a loosely coupled, modular and an easily extensible ecosystem.

« Documentation: A comprehensive documentation that describes how different services
can be integrated together using the Data Spine should be made available to the users.

Along with these initial guiding requirements for establishing a federated platform ecosystem
listed above, the concrete technical requirements for the design and realisation of the Data
Spine are derived from the four base platforms in the EFPF project. These four platforms
are functionality complementary to each other and they offer services with minimum overlap,
as shown in Figure 24. Thus, the EFPF ecosystem formed by initially integrating these
platforms offers a rich set of functionalities to its users from the manufacturing domain.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 58 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

DIGICOR: Agile Collaboration
Platform

* Matchmaking & team formation

+ Distributed workflows

+ Distributed production planning

» Scheduling of distributed activities
+ Risk management in agile networks
* Privacy & user management

COMPOSITION: Integrated
Information management

» Blockchain based messages

+ Big data analytics & learning

* Modeling, simulation & forecasting
» Secure data & service exchange

+ Agent based bidding in marketplace
* Semantic matchmaking

Data Formats

Protocols

Data Models

NIMBLE: Federated Platforms &
Marketplaces

« Access, authorization, user management
+ Semantic catalogue for product &

services

+ Semantic search over catalogues

* Negotiation support in supply chains
* Business process enactment

* B2B & M2M communication channels

Data Spine

Identity Providers ~ Data

vf-OS: Operating System for Smart
Factory

* Factory connectors & loT gateways
+ Software development kit

+ Appstore with PCl compliance

+ Data middleware & protocols

* Process design & execution

* Monitoring & alerting

Figure 24. Conceptual Overview of the EFPF ecosystem

The technical profiles of the four base platforms are documented, including the specification
of their tools, services and components, their maturity levels, exposed interfaces, protocols,
data models, data formats, access control mechanisms, authentication providers supported,
dependencies, programming environment, technical documentation, etc. The documented
platform profiles are included in Annex C of ‘D3.1: EFPF Architecture-I' and Figure 25
presents a summary of the platform profiles.

Technical Aspect Summary of Adaptation by Services

Protocol

HTTP (REST)

AMQP

MQTT

Minor adaptation: WebSockets, RPC, COBRA, RAW

Data Format

JSON

Minor adaptation: XML, OPC-UP Binary, Proprietary (oneM2M/SAREF)

Data Model

UBL

BPMN

OGC-SensorThings

OPC-UA

Minor adaptation: Proprietary

Security Method

OAuth 2.0

OpenID Connect

Basic MQTT Authentication

Minor adaptation: Basic Auth

Identity Provider

Keycloak

Minor adaptation: Proprietary

Figure 25. Summary of the Technical Profiles of the Base Platforms

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public

59 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

2.3 Interoperability Approach

The CEN/ISO 11354 Framework for Enterprise Interoperability [ISO11354] defines three
different approaches to enterprise interoperability. These can also be applied to digital
platform interoperability if the digital platforms are considered as heterogeneous enterprises.

e Integrated Interoperability Approach: This approach defines a common data model or a
common Application Programming Interface (API) and all the digital platforms in the
ecosystem must adhere to it.

e Unified Interoperability Approach: This approach defines a common, canonical data
model at the ecosystem-level similar to the Integrated Interoperability Approach.
However, in this approach, the common data model is defined at the meta-level and
therefore it is a non-executable entity.

e Federated Interoperability Approach: This approach does not prescribe a common data
model at the ecosystem and the all the digital platforms in the ecosystem are free to
define and use their own data models. Interoperability needs to be enabled on-demand,
when required by a use case, through data model transformation. The platforms need to
share an ontology to map between their data models to establish interoperability.

The EFPF ecosystem consists of heterogeneous digital platforms that are owned and
managed by independent entities. Therefore, enforcing a common data model or API at the
ecosystem-level is not feasible. Defining a common canonical meta-model at the
ecosystem-level is very difficult. With new tools, services and/or platforms joining the
ecosystem, the administrator is burdened with updating the meta-model frequently, while
also ensuring backwards compatibility with the already connected platforms. Therefore,
Integrated and Unified Interoperability Approaches do not scale well with the increasing
number of connected tools, services, and platforms in the ecosystem. In contrast, the
Federated Interoperability Approach distributes the burden of establishing interoperability
among the service consumers, when they want to consume a particular service, making it
scalable with the rapid growth of the ecosystem. Therefore, the Data Spine interoperability
approach aligns closely with the Federated Interoperability Approach.

2.4 Design of Interoperable Data Spine

The Data Spine is a collection of components that work together to form an integration,
interoperability, and communications layer for the EFPF ecosystem. Figure 26 illustrates the
architecture of the Data Spine showing a high-level conceptual view of the following core
components that provide the expected functionality of the Data Spine:

e EFPF Security Portal (EFS)
e The Integration Flow Engine
e API Security Gateway

e Service Registry

e Message Bus

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 60/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

3rd Party Platforms Factories

Platform X Platform Y Factory 1
(o] frm] [l | e

A
A

| | Lu

||

)
| | | | | -

| |

I1dP Service ’ ‘ @(—'—)
vf-0S DIGICOR

Figure 26. High-level Architecture of the Data Spine.

EFPF Platform

Data Spine

Service ’

COMPOSITION
Base Platforms

1dP Service ’

NIMBLE

2.4.1 Components of the Data Spine

This section describes the core conceptual components of the Data Spine, their functionality,
and the role they play in establishing the EFPF ecosystem and enabling cross-platform
communication.

2.41.1 EFPF Security Portal (EFS)

The EFPF Security Portal implements a federated identity management mechanism that is
designed to bridge security-related platform interoperability gapes. The platform ecosystem
in EFPF consists of heterogeneous platforms owned by independent entities. Each of these
platforms has its own Identity Provider (IdP). To enable collaboration and data exchange
among the platforms, a user of one platform needs to access a service of another platform,
which is provided implementing an SSO functionality in the EFPF ecosystem.

The EFPF ecosystem is designed to be an extensible platform ecosystem, enabling
numerous login options for individual platforms (e.g., login to platform A, B, C, ...), which
would require continuous updates to the authentication and authorization workflows for each
platform in the ecosystem. The Security Portal is designed as a “distributed single point of

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 61 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

trust” that federates the identity providers (IdPs) of the connected platforms in order to
enable an SSO connection among them. This federation of the IdPs supports users to
seamlessly access the resources, i.e., tools, services, data, by using a single set of
credentials.

The EFPF Security Portal takes on the role of a central identity provider solution for the
EFPF ecosystem. The Web portal of each platform provides an additional “Login with EFS”
option to allow logging in with a user account, as illustrated in Figure 27 below.

In case of adding new independent tools/services to the EFPF platform ecosystem, without
using their own identity provider, the EFPF Security Portal acts as an identity and access
management solution.

EFPF Security Portal

(EFS)

Y Y Y
Platform A Portal Platform B Portal Platform C Portal
Login with A Login with B Login with C
Login with EFS Login with EFS Login with EFS
IdP A IdP B IdP C

Figure 27. “Login with EFS” Option on the Platform’s Web portals

2.4.1.2 Integration Flow Engine (IFE)

Integration Flow Engine (IFE) component of the Data Spine aims to bridge the
interoperability gaps at the protocol level and the data model level between the
heterogeneous services communicating through the Data Spine, in order to create
composite applications. To enable interoperability among the services on the fly, the IFE
makes use of dataflows or “Integration Flows”. The IFE is thus designed as a dataflow
management system based on the concepts from flow-based programming. It provides
functionalities such as connectivity, data routing, data transformation and system mediation.

The integration flows are designed and implemented as directed graphs that have
‘processors’ at their vertices and the edges represent the direction of the dataflow. The
processors are of different types depending upon the functionality they provide: The
processors of type ‘Protocol Connector’ address the issue of interlinking the services that

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 62 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- __|
use heterogeneous communication protocols, the processors of type ‘Data Transformation

Processor’ provide the means for transforming between data models and message formats,
etc. The edges that represent the flow of information support routing of data based on certain
parameters. The IFE provides functionality for the lifecycle management of the integration
flows.

The IFE supports the Request-Response as well as the Pub/Sub communication pattern.
An instance of the Integration Flow Engine should have built-in Protocol Connectors for
standard communication protocols that are widely used in the industry. The functionality of
the IFE can be extended by writing and adding custom processors to the IFE instance. For
example, support for a new protocol can be added by writing a new Protocol Connector and
adding it to the IFE instance.

The IFE offers an intuitive, drag-and-drop style, Web-based Graphical User Interface (GUI)
to the service consumers or system integrators to create the integration flows which is based
on the concepts from visual programming. This interface, the use of integration flows, and
the built-in building blocks for connecting and aligning the APIs enable the users to create
composite applications quickly, easily, and intuitively.

The IFE and its GUI support a fine-grained access control. It is possible to define access
policies to allow or restrict visibility of and/or access to certain GUI elements. In addition, the
IFE supports multitenancy and grouping of integration flows into “Development Spaces”.
The access to the development spaces at view or modify levels can be restricted per user
or user-group. This enables the ecosystem administrator to assign development spaces for
companies where the system integrators from those companies can create their own
integration flows. This helps shifting the data transformation burden across the Service
Consumers making the architecture scalable and extensible. This also enables collaboration
among the users who create the integration flows. Figure 28 illustrates the process for the
creation of an integration flow using the drag-and-drop style GUI of the IFE. The process
steps are described below:

1. Development space: The ecosystem administrator allots a development space for the
company of the Service Consumer ‘consumer1’. consumer1 logs in to the GUI of the IFE
and navigates to his/her company’s development space.

2. Reusable processors: The built-in reusable processors are loaded by the IFE and are
displayed to the users on the GUI.

3. Creation of the integration flow: consumerl drags and drops the processors in the
development space, configures them, and connects them together to create an
integration flow.

4. Functionality offered by the integration flow: The integration flow in this example
consumes the API endpoint EP1-a provided by the Service Provider ‘provider1’, performs
data model transformation, and makes the transformed data available over EP1-b, that
is the “interoperability proxy” endpoint for EP1-a.

Thus, the IFE enables interoperability and creation of applications in an easy and intuitive
manner.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 63 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Data Spine E
Integration Flow Engine (IFE) {l
Gul = | =
2. Use of processors loaded from the Processor Repository | EFPF Security
GUl access | Portal (EFS)
|P1 =] ‘ ‘P2$j | |P3$j |Pn$j ‘ protected by
| 3. Drag-and-drop action |
B LR 3._-:'-'1"'-1:.;_ -------------------------- - EP1-b:
{I :r %, N, e, ‘: Interoperability
' | : Proxy of EP1-a
«Service» :\ ' Protocol | |Data Transforma- |_| Protocol ' O
S1 2/ H ‘ Connector 1 tion Processor 1 Connector 2 H
EP1-a : 4. lllustration of an Integration Flow : i
' .) Service
: E(_ Creates an integration flow ——ﬁ Consumer
Service . 1. Development Space allotted to the Service Consumer consumer1 consumer1
Provider || | T
provider1

Figure 28. An illustration of the Creation of an Integration Flow

Furthermore, the IFE supports standard authentication and authorization protocols such as
OpenID Connect (OIDC) and OAuth2.0 to secure access to its GUI using a pluggable
identity provider. This enables connecting the IFE with the Security Portal in order to enable
user authentication. Finally, to ensure high availability, throughput, and low latency, an
instance of the IFE should be scalable and capable of operating in a clustered fashion.

2.41.3 API Security Gateway (ASG)

The API Security Gateway (ASG) acts as the Policy Enforcement Point (PEP) for the
synchronous HTTP-based APIs, which are exposed by the integration flows created by
users in the IFE. It connects to the Security Portal for making authentication and
authorization decisions. The ASG can also provide permanent reverse proxy endpoints for
the services that do not have fixed/permanent API endpoints.

Moreover, the ASG can be used to secure communication to the HTTP-based APIs of other
components deployed in the same internal network, such as the Service Registry. The ASG
also automates the process of creation of secure proxy endpoints for the services registered
in the Service Registry.

2.4.1.4 Service Registry

In an interconnected platform ecosystem such as EFPF, the services of different platforms
need to be composed together to achieve common objectives. For this purpose, the service
consumers should be able to discover the available services, retrieve their APl metadata,
and consume them without the active involvement of the service providers. The Data Spine
Service Registry provides the following mechanisms to fulfil these requirements:

e Registration and lifecycle management of service/APlI metadata for synchronous
(Request-Response) as well as asynchronous (Pub/Sub) services in a uniform manner

e Discovery, lookup, and filtering of services

e Use of standard API specifications (specs) to capture service metadata to ensure the
completeness of and uniformity across the API descriptions.

Figure 29 shows the abstract class diagram for the Service Registry that illustrates
composition relationship between its classes. The notation ‘0..* in the diagram denotes ‘zero

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 64 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

or more instances’ of the concerned entity. As illustrated in the diagram, the Catalog of the
Service Registry can have zero or more services. Each Service has zero or more APIs, and
each API has exactly one API specification (Spec).

* 1 0.x

Catalog M Service |@p———— API ’1—1— Spec

Figure 29. Abstract Class Diagram for the Service Registry

Figure 30 further shows the abstract schema for the Service object. The API Spec is
obtained from an APl Spec document. This APl Spec document needs to conform to one of
the following standards in order to ensure uniformity across and completeness of API
specifications:

e For synchronous (Request-Response) services: OpenAPl/Swagger Spec [OAS22]
e For asynchronous (Pub/Sub) services: AsyncAPI Spec [AAS22]

Thus, this design makes the schema capable of managing metadata for synchronous
(Request-Response) as well as asynchronous (Pub/Sub) type of services. All the technical
metadata for the APIs of services that is needed for consuming the API can be obtained
from these API Spec documents.

The ‘type’ could be used to categorise the services by giving a type to them based on the
functionality they offer. In addition, any additional functional metadata related to the services,
or the individual APls can be stored in the respective ‘meta’ objects as key-value pairs. Thus,
the basic schema can be extended to include additional metadata for the entire service or
for a specific API.

{
"id": "<unique id - custom or uuid>",
"type": "string",
"meta": {},
"apis": [{
"id": "string",
"url": "<base url of the API>",
"spec": {
"mediaType": "<mediaType type of the API Spec document>",
"url": "<url to API Spec document>"
¥
"meta": {}
ja
"created": "2020-06-05T15:46:36.793Z",
"updated": "2020-06-05T15:46:36.793Z"
}

Figure 30. Abstract Service Description Schema of the Service Registry

2.4.1.5 Message Bus

In the manufacturing domain, the Pub/Sub communication pattern is widely used. The shop-
floor data from sensors is typically collected by a Factory Connector or an loT Gateway and
is made available to other services through a message-oriented middleware. The Data
Spine Message Bus supports the Pub/Sub communication pattern. In addition, the Message
Bus supports multitenancy and fine-grained access control. It provides interfaces for topic,
user, and policy management.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 65/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

An implementation of the Message Bus should support messaging protocols such as MQTT,
AMQP, etc. that are widely used in the industry. The Message Bus can be extended to add
support for new protocols via a plugin mechanism.

Figure 31 shows the conceptual components of the Message Bus. At the core of the
Message Bus is the ‘PubSub Service’. The PubSub Service provides a Pub/Sub API. The
published messages are accepted by the PubSub Service and these messages are stored
in queues/buffers provided by the Message Bus until they are forwarded to the designated
subscribers. The Message Bus is capable of having multiple topics/channels and also sub-
topics over which multiple publishers can publish messages and each topic/sub-topic can
have multiple subscribers. In addition, the Message Bus also has an Identity and Access
Management component so that the identities of the publishers and subscribers can be
verified, and their publications and subscriptions can be access controlled. The Message
Bus supports the use of username-password based authentication. Finally, the Message
Bus provides interfaces for user and topic administration, management and monitoring
which could be HTTP APIs or GUIs or even CLIs.

Message Bus (MB) E

MB Core E

PubSub
O Service E O

Pub Sub

T ¢

O Identity & Access E Topic Management E O

Management & Monitoring
Interface Interface

Figure 31. High-level Architecture of the Message Bus

2.4.2 Data Spine Architecture and Components’ Interaction

Figure 32 illustrates the architecture of the Data Spine and interaction among its
components. The access to the GUI of the IFE and its elements is protected by the Security
Portal. The ASG acts as the Policy Enforcement Point and relies on the Security Portal to
make the access control related decisions. The ASG secures the REST API of the Service
Registry and offers a secure proxy endpoint to access it. The APl Security Gateway is
configured to check the Service Registry for new service registrations periodically in order
to automatically create secure proxy endpoints for them. The Service Registry publishes
service status announcement related messages to the Message Broker.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 66 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing

- www.efpf.org

Data Spine {H
Integration Flow Engine (IFE) E
IFE Core $1|
Integration Flow {I || Processor E
(iFlow) Manager Repository EFPF Security
[| Portal (EFS) | | O
) . Management
Multitenancy | | iFlow GUI
Access Manager Repository
I
(} M N E LCJJ
Integration Flow cul GUI access protected by
GUI
E Service Status E E
Message Announcements | Service API
O—r— Bus } Registry —@— security ——(O)
Management MB) ' \ig pub/sub API (SR) REST | Cateway SR REST
GUI API API Proxy

Figure 32. Architecture of the Data Spine

Figure 33 illustrates how the interoperability proxy endpoint EP1-b exposed by the
integration flow is secured by the ASG. When the Service Consumer, consumerl registers
EP1-b to the Service Registry, the ASG automatically creates a security proxy endpoint EP1-
c for EP1-b. consumerl can then invoke EP1-c in through S2 with an access token obtained

from the Security Portal.

In this way, the components of the Data Spine work together to enable integration of and
communication between the services of different platforms.

Data Spine $:|
Integration Flow Engine (IFE) {l E
EFPF Security
Portal (EFS)
Gul =z]
Service provider (5 Service consumer
provides service consumes service
STIOUGN e || | | Loceeeommeoemme e ceeeccceeemmneemseecesemeeeee e e e e emceeen \lj $1 through
{I Data Spine . the Data Spine {l
«Servicer) : Protocol Data Transforma- Prolcco\ C} E i Service»
s1 OJ 1 Connector WE tion Processor 1 Connel:lor ZE API Q s2
: EP1-b Security EP1-c:
EP1-a ' llustration of an Integration Flow and its runtime operation Interoperability | Gateway Proxy of EP1-b
b Praxy of EP1-a
Service Development Space allotted to the Service Consumer consumer1 Service
% [= S T Consumer

provider1

consumer1

Figure 33. lllustration of an Integration Flow and its Runtime Operation

In summary, the Data Spine provides the following functionalities:

e Authentication, authorization and SSO

Service/API metadata lifecycle management and discovery

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 67 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e Infrastructure and tooling for protocol connection, data transformation, routing, and
system mediation

e Multitenant, Web-based, drag-and-drop style GUI for an easy and intuitive creation of
applications with minimal coding effort

e Message brokering

2.5 Realisation of Interoperable Data Spine

This section presents and describes the open-source technologies chosen to realise these
conceptual components of the Data Spine as shown in Figure 34. In order to make this
section as comprehensive and independent as possible, the sections from ‘D3.11: EFPF
Data Spine Realisation — I’ have been taken and updates have been added. The work on
Data Spine after D3.11 (M18) focused not only on improving the Data Spine’s technology
stack and its integration, but also on automating the deployment, defining, and automating
integration, system, and performance tests, improving the user documentation and
supporting the implementation of the pilot and Open Call experimentation scenarios. The
subsequent sections briefly describe these activities. The process followed for the selection
of the open-source technologies to realise the components of the Data Spine is described
in D3.1 (M9) and D3.11 (M18).

Conceptual Technology Version
Component

EFS Keycloak 3.4.0
Integration Flow | Apache NiFi 1114
Engine

API Security Apache APISIX & asg-importer 23.0&1.00
Gateway

Service Registry LinkSmart Service Catalog 3.0.0-beta.1
Message Bus RabbitMQ 3.8.5

Figure 34. Technologies Selected to Realise the Data Spine

2.5.1 EFPF Security Portal

The EFPF project uses the Keycloak identity provider to realise the EFS. The following lists
the main functionalities performed by the EFS.

° User Management
° User Federation Service, SSO, Loggers
° Policy Enforcement Service

2.5.1.1 Architecture and Interfaces
User Management

Keycloak is an OpenlID connect (OIDC) and User-Managed Access (UMA) compliant identity
provider. Keycloak handles user management and authentication, and also provides an
Admin API to perform user management and a fully extensible plugin-based ecosystem.

User Federation Service

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 68 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
To enable user’s login to any of the connected platforms, the user can select one of the two

procedures for the authorization:
° Login through a connected platform (native users), and
) Login through the EFPF platform (federated users).

The platform-level interoperability in EFPF can be achieved by following workflows 1 and 2,
as shown in Figure 35 and Figure 36 respectively. Note that both workflows require the user
to be registered on the EFPF platform.

Figure 35 illustrates the workflow that follows the bottom-up approach for federation. Here,
the user logins to the connected platform using his/her EFPF credentials. The EFPF
credentials are issued by the EFS and are not propagated to the connected platforms. The
initial representation of the user will be created when the user opts to login with EFPF
credentials in a connected platform. If a user is already present in the connected platform,
then a linked user will be created with the existing roles of the connected platform.

The second workflow, presented in Figure 36, enables the user to login to the EFPF platform
(via EFS) and then visit any connected platform in the same browser session, e.g.,
PLATFORM 1, PLATFORM 2, etc. In this approach, the user logins to the connected
platforms using his/her previously provided EFPF credentials. By keeping the common
browser session, the EFPF user can achieve SSO capability when logging in to other
connected platforms.

The implementation of the EFS using Keycloak follows the OIDC based identity and
federation method. Here, the user who tries to login to the connected platform using EFPF
credentials, is redirected to the EFPF platform’s Identity Provider, i.e., the EFS, for the
validation of his/her credentials. After verifying the credentials, the user is redirected to the
relevant connected platform. Furthermore, the connected platform identifies the user and
provides required roles based on predefined policies.

. PLATFORM 1 EFPF
PLATFORM

‘ The user goes to the base

The user wants to log in to
PLATFORM 1

the Platform 1 using his/her
EFPF credentials

v

\4

The user is redirected to
PLATFORM 1 with the
authorization code

A

PLATFORM 1 requests a user
token for the authorization
code

A4

Token provided by the EFPF
PLATFORM

Converting token and creating
the linked user in the base
platform

—

Figure 35. Workflow 1: Login to PLATFORM 1 using EFPF platform credentials

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 69/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

EFPF
Platform 2 Platform 1
Platform
The EFPF user goes to the EFPF Login t¢ EFPF using
PLATFORM EFPF ¢redentials

>

The user goeg to PLATFORM
1 & selects to|login with EFPF

PLATFORM 1 redirects to

Convert token &
Create linked user in
< PLATFORM 1

The user goes to PLATFDRM 2 &
selects to login with{ EFPF

PLATFORM 2 redirects to

Convert token & Create
o linked user in PLATFORM 2

Figure 36. Workflow 2: Login to EFPF using EFPF platform credentials, then login to
PLATFORM 1 and PLATFORM 2

Policy Enforcement Service

Policy Enforcement Service acts as the first contact point from the API Security Gateway.
This allows the enforcement of the policies for the HTTP-based APIs exposed by the Data
Spine. EFS allows 2 types of permissions to be created:

1. Resource-Based: The permission can be directly applied to a resource created in the
identity provider.

2. Scope-Based: The permission can be assigned to scopes or scope(s) and resource.

Scopes represent a set of rights at a protected resource. Scopes can be resource specific
or can be shared between multiple resources. Figure 37 shows the architecture of the policy
enforcement service.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 70/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Policy Enforcer <<PEP>> Resource Server
{ "
‘ﬁ——“ Request Filter ! Inlercepior ”——H JEE] Spring 1 [Wigrl x ‘ [Mode. js H
./
<<PAP>> Authorization Services <<PDP>>
.’-—
} —
Adminkstratian U1 ‘ [Token Endpoint } Protection AP } }—-
|
Policy Evaluation <<PDP | PIP>> +
‘ [Permission } [Palicy Evaluation Engine } [Palicy Provider] }—— Audit
Storage l

=3l

Pernmssion] [Faolicy] |> —_——

Figure 37. Policy Enforcement Architecture

2.5.1.2 Configuration
Identity Provider Configuration

The EFS Keycloak identity provider is configured to use the OIDC-based mechanism to
authenticate and authorize the users. Trusted clients should be created in the identity
provider for the applications to authenticate users and micro-services in the ecosystem.

SSO Configurations

To enable SSO, as illustrated in Figure 38, a dedicated client for each connected platform
should be created in the EFS Keycloak identity provider (IdP). The SSO client will have the
redirect URL and other OIDC configurations such as the OAuth flows supported for the
client. Then, if a connected platform has a Keycloak-based IdP, the EFS Keycloak IdP must
be added as a trusted IdP to it, as depicted in Figure 39. For non-Keycloak-based IdPs, the
steps below should be followed:

1. Obtain an authorization code for the user

e Redirect the user to the following URL and replace the values ‘your_client_id’,
‘your_redirect_uri’, and ‘ccd9’ with your custom values.

https://[<EFS Keycloak URL>/auth/realms/<realm name>/protocol/openid-
connect/auth?client_id=your_client_id&redirect_uri=your_redirect_uri
&response_type=code&scope=openid&nonce=ccd9

¢ Once the user logs in to the EFS, the EFS will redirect the call to the given redirect_uri
with an authorization code. Extract the code value from the URL.

2. Obtain an ID Token with the Authorization Code Grant Type using the code value from
step (2).

3. Decode the ID Token to obtain the user details

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 71/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

4. Create the User in the IdP of the connected platform

ents nimble-federation-client

Nimble-federation-client &

etting; Credentials Roles Client Scopes @ Mappers @ Scope @ Authorization Revocation Sessions @ Offline Access @
Client ID & nimble-federation-client
MName @

Description &

Enabled & m
Consent Required © OFF
Login Theme & v
Client Pratocal © openid-connect v
Access Type @ confidential v

Standard Flow Enabled &
Implicit Flow Enabled @
Direct Access Grants Enabled ©

Service Accounts Enabled &

Authorization Enabled ©
Root URL @

* Valid Redirect URIs © hetpef/nimble-staging-neu. saizburgresearch arE080/

Figure 38. A Sample Client in EFS Keycloak to Enable SSO

Login with EFPF

Settings Mappers Permissions

Redirect URI & mble-staging-neu.salzburgresearch.at:8080/auth/realms/master

* Alias @
Display Name © Login with EFPF
maedo [
Store Tokens © OFF
Stored Tokens Readable & OFF
Trust Email @ OFF
Account Linking Only © OFF
Hide on Login Page @ oFF
GUI order ©
First Login Flow © first broker login v
Post Login Flow © v

v OpenlD Connect Config @

* Authorization URL @ p pf-security-portal.salzburgresearch.at/auth/r protocol/openid-connect/auth
Pass login_hint © OFF
*Token URL © ps:/iefpf-security-portal.salzburgresearch.at/auth/r protocol/openid-connect/token

Logout URL @

Backchannel Logout & OFF
Disable User Info © m
User Info URL © ps:Hefpf-security-portal salzburgresearch.at/auth/r protocolfopenid-connect/userinfo
*Client ID ® nimble-federation-client

* Client Secret @
Issuer @

Default Scopes ©

Figure 39. Adding EFS Keycloak as a Trusted IdP in a Connected Platform's IdP for
Enabling SSO

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 721296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
By default, the EFS Keycloak identity server supports the standard flows. However, if the

base platform does not have a back end, then an implicit flow can be enabled to exchange
SSO tokens.

2.5.1.3 Operation

The components of the EFS are packaged and containerized as a docker-compose solution.
All the sub-components of the EFS are dependent on the Identity Server. Therefore, the rest
of the EFS components are initiated after the Identity Server runs. The components of the
EFS are monitored using the access logs. The ldentity Server also provides several
functionalities to ensure smooth operation such as detection of brute forcing or any
suspicious activities.

2.5.2 Integration Flow Engine

Apache NiFi was selected to be the Integration Flow Engine of the Data Spine. It is a
dataflow management platform based on the concepts of Flow-based programming. It
automates the flow of information between systems through directed graphs called
dataflows. The dataflows support communication, data routing, data transformation and
system mediation logic with the help of ‘processors’ as their vertices.

ni & @ 5 & B B F T S oo rootr Sltaters—A sz [= |
& 10 = 9,478/1.49 MB 0 0 86 17 3 0 0 0 0 0 0 2 15:06:27 uTc|
@ Navigate

Status Bar Search
aa Il

Dataflow / Integration Flow

Hangermchesgonse
ok SMECRaters Masetplace S et
<y Operate

SMECluster - GetAllProducts TTT T s =)
31 3ff-4d81-39af-6355-5cclaaal644; = "—\

4 5% >R =3
I «— Operate Palette
Canvas

Location Bar

|

NiFi Flow _» SMECluster - GetAllProducts.

Figure 40. Apache NiFi GUI Elements

The processors are responsible for handling data ingress, egress, routing, mediation, and
transformation. The edges that connect these processors with each other are called
‘Connections’. Apache NiFi offers a Web-based, highly configurable, drag-and-drop style
GUI for creating such dataflows. Figure 40 highlights the elements of NiFi’'s GUI and also
shows a sample dataflow. NiFi’'s GUI offers a functionality to search for a particular
processor and view its short description to include it in a dataflow as shown in Figure 41.
NiFi contains as many as 284 different processors as of version 1.11.3. In the context of
Data Spine, the Integration Flows translate to dataflows in NiFi. Henceforth, dataflows would
be referred to as Integration Flows in this document.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 731296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Source Displaying 13 of 284 http

all groups AVl Type ~ Version Tags

ExecuteSparkinteractive 1.11.3 livy, spark, hitp, execute —

amazon attributes FetchElasticsearchHttp 1113 read, elasticsearch, fetch, get, ...
avro aws consume GetHTTP 1113

csv database
delete fetch get

!ngeSt 1 mgress InvokeAWSGatewayApi 111.3 Rest, Gateway-API, http, https, ...
Insert Json kafka InvokeHTTP 111.3

input, get, fetch, http, poll, http...
HandleHttpRequest 111.3 request, ingress, http, https, w...
HandleHtipResponse 1.11.3 response, http, https, web serv...

rest, http, client, https

listen logs ListenHTTP 111.3
message pubsub PostHTTP 1113
put record
restricted source
text update

rest, http, https, listen, ingest

http, archive, https, copy, remote
PutElasticsearchHttp 111.3 elasticsearch, upsert, insert, u...
PutElasticsearchHttpRecord | 1.11.3 elasticsearch, record, upsert, i...

QuervElasticsearchHtin 111.3 read. elasticsearch. auerv. aet. ... ~

HandleHttpRequest 1.11.3 org.apache.nifi - nifi-standard-nar

Starts an HTTP Server and listens for HTTP Requests. For each request, creates a FlowFile and
transfers to 'success’. This Processor is designed to be used in conjunction with the
HandleHttpResponse Processor in order to create a Web Service

Figure 41. Apache NiFi Processors

Apache NiFi's conformity to the fundamental design requirements for Integration Flow
Engine identified in Section 2.4.1.2 is discussed below:

° License: Apache NiFi comes with Apache License v2.0.

. Usability: Apache NiFi provides an intuitive, drag-and-drop style GUI to the developers
to create the Integration Flows with minimal effort. The collaboration of work
concerning a particular Integration Flow among different developers is easy to manage
as NiFi provides a Web-based GUI for creating Integration Flows and a Multi-tenant
authorization capability that enables different groups of users to command, control,
and observe different parts of the dataflow, with different levels of authorization.
Therefore, NiFi was found to be in compliance of the requirements of usability,
developer productivity and ease of collaboration.

o Built-in Protocol Connectors: NiFi provides connectors for standard communication
protocols such as HTTP, MQTT, AMQP, etc. that are widely used in the industry. In
addition, it provides processors for directly connecting with widely used industrial grade
systems such as Apache Kafka, MongoDB, Elasticsearch, AWS DynamoDB, AWS S3,
etc.

. Built-in Data Transformation Processors: NiFi provides several data transformation
processors: JoltTransformJSON, TransformXml, ExecuteScript, ReplaceText,
MergeContent, etc. These include TransformXml processor that supports

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 741296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

transformations with XSLT which is a WC3 standard, a Turing complete language for
transformations and widely known in the industry. But XSLT has a steeper learning
curve. Whereas, JoltTransformJSON, a processor which uses Jolt transformation rules
to transform one JSON data model to another JSON data model, is easier to learn, but
not Turing complete. Apart from these two processors, NiFi also offers ExecuteScript
processor that facilitates users in writing a script for performing data transformation.

. Extensibility: NiFi is at its core built with extensibility in consideration. Points of
extension include: Processors, Controller Services, Reporting Tasks, Prioritizers, and
Customer User Interfaces. For example, it is possible to write a custom processor for
NiFi in order to connect to an OPC-UA server (based on OPC-UA Java Stack) and
read the data.

. Performance and scalability: NiFi was observed to work seamlessly with resource
allocation of 8GB RAM and 2 CPU cores. NiFi is also able to operate within a cluster.

. Identity and access management: NiFi supports a pluggable OpenID Connect based
authentication provider such as Keycloak. Alternatively, NiFi also supports user
authentication via client certificates, via username/password with pluggable Login
Identity Provider options for Lightweight Directory Access Protocol (LDAP) and
Kerberos or via Apache Knox.

. Component integration effort: NiFi provides connectors for integration with external
components. E.g., for integration with Kafka, NiFi has 20 built-in processors.
Integration of NiFi with REST APIs of other components such as EFS was done with
minimal effort.

. Maintainability and Documentation: NiFi's GUI is very simple, intuitive, drag-and-
drop style and easy to manage. NiFi has a comprehensive documentation that covers
different aspects of the Platform and different perspectives. NiFi has a Getting Started
Guide, a User Guide, an Expression Language Guide, RecordPath Guide,
Administrator’'s Guide, a Developer's Guide, In Depth Guide and also the
documentation of its REST API. NiFi has a strong community and has frequent source
code releases.

Thus, Apache NiFi complies with the foundational design requirements identified for the

Integration Flow Engine of the Data Spine.

Some other additional key features of NiFi include:
e Flow Management

e NiFi supports guaranteed delivery with the help of persistent write-ahead log and
content repository, even at a very high scale.

e The Connection queues of NiFi support data buffering and can be configured to
apply back pressure upon reaching a certain limit or can age off data.

e NiFi supports prioritized queuing where data can be retrieved from queues based
on various strategies such as oldest first, newest first, largest first, or some other
custom scheme.

e NiFi supports Flow Specific QoS i.e., it can be configured to prefer low latency vs
high throughput or loss tolerant vs guaranteed delivery.

e Ease of Use

e Apart from the easy to use drag-and-drop style GUI, NiFi also supports visual
command, control and debugging where parts of the Integration Flow can be

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 75 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
stopped at runtime and queues can be examined. Also, changes can be made to

any Integration Flow at real-time and those changes immediately take effect.

e Visually created Integration Flows in NiFi are represented as XML documents in
the backend. NiFi supports download-upload of these XML Integration Flows and
also saving them as templates — thereby enabling reuse and collaboration.

¢ Data Provenance

e Data supports automatic recording of provenance of data related to the Integration
Flows — a feature that would prove to be very useful in Production Environments
for debugging, finding out the history of changes to a particular Integration Flow
for troubleshooting and for ensuring compliance.

e Flexible Scaling Model
e Scale-out (Clustering): NiFi supports scaling-out though the use of clustering.

e Scale-up and down: NiFi also be scaled-up and down in a flexible manner. To
handle increasing throughput, the processors in an Integration Flow can be
configured to increase the number of concurrent processors.

Thus, Apache NiFi was identified as the most suitable candidate to realise the Integration
Flow Engine of the Data Spine.

2.5.2.1 Architecture and Interfaces

8 JWM @ Web Server

£ Flow Controller

Processor 1 Extension N

S FlowFile S Content Provenance
Repository Repository Repository

Figure 42. Architecture of Apache NiFi [NOG20]

Figure 42 shows the primary internal components of Apache NiFi. NiFi executes inside a
JVM on the host operating system. The Web Server component hosts NiFi’'s RESTful HTTP-
based command and control API. The Flow Controller is the central component that
manages the execution of processors and extensions. It provides threads for the execution
of processors and handles their scheduling when the processors or extensions receive
resources to execute. As discussed before, NiFi supports custom extensions. These
extensions also run within the same JVM as the in-built components of NiFi. NiFi has three
different types of repositories for storing different types of data. The FlowFile Repository
captures the runtime state of NiFi where it stores the metadata state of its FlowFiles at a

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 76 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

given time. FlowFile is the data serialization format used by NiFi. The FlowFile Repository
implementation instance is pluggable, and it uses Write-Ahead Log located on a specified
disk partition. The Content Repository stores the actual contents of a given FlowFile. The
Content Repository construct is also pluggable. Finally, the Provenance Repository stores
provenance data for all the events and actions. The implementation of Provenance
Repository is pluggable as well. The event data stored in the Provenance Repository is
indexed and searchable.

ZooKeeper Server

@ Web Server

g: Flow Controller

Processor 1 Extension N ’ Cluster Coordlnator

g FlowFile

Repository

g Content % Provenance . Primary Node

Repository Repository

ZooKeeper Client

Figure 43. Apache NiFi Cluster

NiFi also supports scaling-out though the use of clustering. Figure 43 shows the operation
of NiFi within a cluster. Apache ZooKeeper can be used to enable clustering. However, in
the EFPF Production Environment, NiFi cluster is enabled using the Docker Swarm
technology, which is followed as the uniform clustering technology for the other Data Spine
components as well.

NiFi offers a RESTful HTTP-based APl [NAR20] that provides a functionality to
programmatically send commands to control a NiFi instance at runtime. The API provides
endpoints for lifecycle management of Integration Flows, processors, Process Groups,
users, access policies, templates, etc. The API also provides User authentication and token
endpoints e.g., to authenticate a request through the plugged OpenID Connect provider.
Moreover, the API offers control endpoints that can be used e.g., to start and stop
processors at real-time; debugging endpoints that can be used to monitor queues, query
provenance data, etc.

2.5.2.2 Configuration

In order for two heterogeneous services to be able to communicate, they must be integrated
and interoperated though the Data Spine beforehand which is accomplished with the help
of Integration Flows. The Integration Flow Engine needs to be configured for allowing its
usage and facilitating collaboration among system integrator users who create the
Integration Flows. Such design-time aspects and prerequisites to the run-time operation of
Integration Flows are discussed in this section.

Securing a NiFi Instance:

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 771296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
In order to setup a secure instance of NiFi, an SSL certificate, a keystore, a truststore, etc.

need to be setup at first. To automatically generate the required certificate, keystores,
truststore, and relevant configuration files, a tls-toolkit [NTT20] command line utility provided
by NiFi can be used. The tls-toolkit also alters nifi.properties file to set
nifi.web.https.port=9443 and remove nifi.web.http.port=8080. Once this
configuration is done, NiFi's GUI becomes accessible over https. The tls-toolkit is especially
useful for securing multiple NiFi nodes.

User Authentication:

Users using NiFi’'s Web-based GUI to create Integration Flows need to be authenticated
first. NiFi supports user authentication via client certificates using 2-way SSL, via
username/password with Login Identity Providers such as LDAP and Kerberos, via Apache
Knox, or via OpenlID Connect (OIDC). NiFi can be configured to use one of these at a given
time. In EFPF, NiFi’'s GUl is secured using EFS’s Identity Provider via OIDC. To enable user
authenticated via OIDC, the properties as shown in Figure 44 are configured in
nifi.properties file.

OpenId Connect SSO Properties
nifi.security.user.oidc.discovery.url=http://localhost:9090/auth/realms/master/.well-
known/openid-configuration

nifi.security.user.oidc.connect.timeout=100 secs
nifi.security.user.oidc.read.timeout=5 secs
nifi.security.user.oidc.client.id=nifi-client
nifi.security.user.oidc.client.secret=c73d0448-e53c-4c92-a31e-8545f2b0868e
nifi.security.user.oidc.preferred.jwsalgorithm=RS256

Figure 44. Sample OIDC Properties Configuration for NiFi

After this configuration, NiFi would redirect to EFS’s Identity Provider i.e., Keycloak for login
and after a successful login display 'Insufficient Permissions' error as access policies for
logged in users still need to be configured. Thus, NiFi is able to use the same user-base
from EFS and user lifecycle management can take place at a single place i.e., EFS.

Multi-Tenant Authorization:

NiFi’'s Web-based GUI is intended to be used by multiple users for creating Integration
Flows. The access and visibility of such Integration Flows needs to be restricted to their
creators only and, restricted and hidden from the other users. Furthermore, user
collaboration over an Integration Flow or a Process Group containing several Integration
Flows needs to be facilitated. This requires not only configuring who has access to the
Process Groups but also the level of their access. NiFi provides this functionality through it
‘Multi-Tenant Authorization’ policy governance framework. The Multi-Tenant Authorization
enables multiple groups of users to collaboratively view, control and manipulate different
parts of the Integration Flows, with different levels of authorization. Thus, when a logged in
user attempts to view or update a particular resource through NiFi’'s GUI, NiFi, based on the
configured privileges for the user allows or denies that particular action. To define such
privileges for individual users or user groups, the access policies need to be defined.

For Data Spine, two different user roles would be defined in the EFS: DS-Admin and DS-
User. These would be mapped to user groups in NiFi named ‘DS-Admins’ and ‘DS-Users’
respectively. Upon login to NiFi through EFS, with no user accounts in NiFi (and hence with
no Authorization policies defined), '‘Insufficient Permissions’ message is displayed.
Thus, the First User (‘Initial User Identity') and access policies for that user need to be hard-
coded into the config files of NiFi. The access policies for the users belonging to the DS-

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 781296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Admins group are then configured by this First User enabling them to configure access
policies for DS-Users. In EFPF, the access policies for these user roles/groups need to be
defined at three different levels:

e Global Access Policies: The Global Access Policies define privileges for uses that are
applicable system-wide. Figure 45 shows the Global Access Policies defined for NiFi in
the EFPF Project.

Role (Group) Privilege
DS-Admin DS-User
(Group: (Group:
DS-Admins) DS-Users)
Y NA Y NA view the Ul = Allow users to view the Ul
Y Y Y Y access the | Allows users to view/modify the controller including
controller Reporting Tasks, Controller Services, Parameter Contexts

and Nodes in the Cluster

Y Y Y Y access Allows users to view/modify Parameter Contexts. Access to
parameter Parameter Contexts is inherited from the "access the
contexts controller" policies unless overridden.

Y Y N N query Allows users to submit a Provenance Search and request
provenance @ Event Lineage

Y Y Y N access Allows users to create/modify restricted components
restricted assuming other permissions are sufficient. The restricted

components = components may indicate which specific permissions are
required. Permissions can be granted for specific
restrictions or be granted regardless of restrictions. If
permission is granted regardless of restrictions, the user can
create/modify all restricted components.

Y Y N N access all | Allows users to view/modify the policies for all components
policies

Y Y Y N access Allows users to view/modify the users and user groups
users/user
groups

Y Y N NA retrieve site- | Allows other NiFi instances to retrieve Site-To-Site details
to-site
details

Y Y N NA view system = Allows users to view System Diagnostics
diagnostics

Y Y N N proxy user | Allows proxy machines to send requests on the behalf of
requests others

Y Y N N access Allows users to view/modify Counters
counters

Figure 45: NiFi Global Access Policies

e Component-level Access Policies for the Root Process Group (‘NiFi Flow'): These
policies define privileges for uses that are applicable to the Root Process Group of NiFi
and the components (Process Groups, Integration Flows, processors, etc.) present in it.
Figure 46 shows the Component-level Access Policies for the Root Process Group 'NiFi
Flow' in the EFPF Project.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 79 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

DS-Admin DS-User Policy Privilege
(Group: (Group:

DS-Admins) | DS-Users)

view the component Allows users to view component configuration details

Y N modify the component Allows users to modify component configuration details

Y N operate the component = Allows users to operate components by changing component
run status (start/stop/enable/disable), remote port
transmission status, or terminating processor threads

Y N view provenance Allows users to view provenance events generated by this
component
Y N view the data Allows users to view metadata and content for this component

in flowfile queues in outbound connections and through
provenance events

Y N modify the data Allows users to empty flowfile queues in outbound
connections and submit replays through provenance events
Y N view the policies Allows users to view the list of users who can view/modify a
component
Y N modify the policies Allows users to modify the list of users who can view/modify a
component
Y N receive data via site-to- = Allows a port to receive data from NiFi instances
site
Y N send data via site-to- = Allows a port to send data from NiFi instances
site

Figure 46. Component-level Access Policies for the Root Process Group (‘'NiFi Flow")

e Component-level Access Policies for a particular component (Process Group)
PG_X: These policies define privileges for uses that are applicable to that particular
component (Process Group, Template, etc.). Figure 47 shows the recommended
component-level access policies to be configured by the Component-Owner. These can
be customized based on requirements by the Component-Owner. When a new System
Integrator user in EFPF wants to create Integration Flows in NiFi, DS-Admin creates a
new component 'PG_X' for his/lher company/project and grants him/her 'admin’ level
privileges for PG_X and he/she are regarded as the component-owner for PG_X. The
component-owner can then grant permissions for PG_X to others (e.g., by creating a
user group such as 'PG_X-Admins', 'PG_X-Users', etc.).

Component- Component- Policy Privilege

Owner User

for PG_X for PG_X

User-Group: User-Group:

PG_X-Owners PG_X-Users

Y Y view the Allows users to view component configuration details
component

Y Y modify the | Allows users to modify component configuration details
component

Y YIN operate the Allows users to operate components by changing component
component run status (start/stop/enable/disable), remote port transmission

status, or terminating processor threads

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 80/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Y Y/N view
provenance

Y Y view the data

Y YIN modify the
data

Y Y/N view the
policies

Y YIN modify the
policies

Y N receive data

via site-to-site

Y N send data via
site-to-site

Allows users to view provenance events generated by this
component

Allows users to view metadata and content for this component
in flowfile queues in outbound connections and through
provenance events

Allows users to empty flowfile queues in outbound connections
and submit replays through provenance events

Allows users to view the list of users who can view/modify a
component

Allows users to modify the list of users who can view/modify a
component

Allows a port to receive data from NiFi instances

Allows a port to send data from NiFi instances

Figure 47. Component-level Access Policies for a particular component (Process Group)

PG_X

Figure 48 illustrates an example of NiFi’'s Multi-Tenant Authorization. The users ‘admin’ and
‘user1’ have roles DS-Admin and DS-User respectively and userl is the Component-Owner
for the Process Group ‘ProjectA’. Therefore, only ProjectA component is visible and
accessible to userl and not other Process Groups and processors and not even some of

the GUI elements.

«

n ¢ QA ET T e

0 0/0bytes 0 0FO0 M2 4 0 0 0 0 0 70 & 11:27:23CET

C A MNotsecure | hitps//localhost:9443

<] m HendieHtipRequest

43 operate

NiFi Flow

To
e Project

= ProjectB

0 %0 G0 0070

NiFi Flow

oa (5% bl =2 visible, accessible

— .
=|ni &
Q E o 0/0bytes o 0 o m2 4 o 0
@ Navigat
Qe (]
[
I I . i
i n H
49 Operate ¥ 1
A F55602c3-016f-1000-7655-57c72.. s S
= SRR { ™ 00:00.00.000 |
ols] 113 P8 t visible, not ibl
not visible, Not accessibie
o R Guroed B{0bytes) e oo
Lt N AEEN N
Projecta
o oro o 2] 80 0»0 N0 A1 %O
‘:""m o : :’:n-wﬂ : 5 .
wadiWaiie Dbytes] Dbyina RexdWite_ Ot Sits i
ow o - 00 bries i
0600070 [OC0 OO0]
! ‘3-016f-1000-7b55-57c726b250ac

user1 has ‘Component-Owner’ level privileges for Process Group ‘ProjectA’

Figure 48. NiFi Multi-Tenant Authorization

This completes the Multi-Tenant Authorization of NiFi and its GUI can be used to create and

execute Integration Flows.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 81/296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Securing Integration Flow APl Endpoints

The Integration Flows often expose new endpoints which are proxy or interoperability-proxy?
endpoints for external services and access to these endpoints needs to be secured. As
shown in Figure 49, the access to these endpoints is secured with the API Security Gateway.
When these endpoints are registered in the Service Registry, the APl Security Gateway
automatically creates proxy endpoints for these endpoints and the service consumers are
required to invoke these proxy endpoints in APl Security Gateway instead. This completes
the security integration of Data Spine’s Integration Flow Engine — Apache NiFi.

Apache NiFi E|
Flow Controller Cont.
R I p 2]
Framework |\
«Service»
) Processor 1 E | '®) APl security | —()
FlowFile Reposito $:| —O — 2/
P v Q Integration Gateway EP2
Flow API EP1's
Endpoint Proxy
{l (EP1)
P N g] o
rocessor REST API @
Content Repository $:| —@—
7] L s & 2]
Extension 1
Provenance Repository $:| —@—
AUthN [~ «Service»
_O' EFS
Extension N E O)—
Extension
Interface
Endpoint

Figure 49. Data Spine NiFi Security Integration

The design-time configuration of Data Spine Integration Flow Engine’s instance NiFi is now
complete.

2.5.2.3 Operation

Figure 50 shows a basic Integration Flow that provides an interoperability-proxy endpoint
for an external endpoint. All the processors can be started with selecting them and pressing
start (») button on Operate Palette. The HandleHTTPRequest processor Starts an HTTP
Server and listens for HTTP Requests. Once it receives a request, it creates a FlowFile and
forwards it to ‘success’ relationship whose other end is connected with the InvokeHTTP
processor. This processor invokes the preconfigured external endpoint and if it receives a
response, it forwards it to Jolt Data Transformation Processor which does the data
transformation and delegates the outcome to HandleHttpResponse processor which returns
the response to the caller, else to HandleHttpResponse processor which returns the
response/error to the caller.

2 same data is made available over a new endpoint/topic but adhering to a different data model (and/or

format) and/or over different protocol
I ——

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 82 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

HandleHttpRequest

HandleHttpRequest 1.11.4 |H.Y0keﬂITF ,
org.apache.nifi - nifi-standard-nar 851 InvokeH E 1.11.4
- Namclencease org.apache.nifi - nifi-standard-nar
: d/Writ gLD bwe?ﬂ n :‘“m Queued 0 (0 bytes) > In U (T) 5 min
coafiinte yies! !” y Read/Write 0 bytes/ 114 bytes 5 min
Smk /T 11(;1415?1?0) 04:54.148 : . Qut Ly es) Sl
sskertime 118452/ 000454 " Tasks/Time 1/00:00:00.201 5 min

Nemclissponag Name Failure, No Retry, Retry

Queued 0 (0 bytes) Queued 0 (0 bytes)

JoltTransformJSON

JoltTransformJSON 1.11.4 HandlthtpRespomse

org.apache.nifi - nifi-standard-nar HandleHttpResponse 1.11.4
In 1(114 bytes) 5 min org.apache.nifi - nifi-standard-nar
Read/Write 114 bytes / 55 bytes 5 min In 0 (0 bytes) 5 min
Out 1 (55 bytes) 5 min Read/Write O bytes/ 0 bytes 5 min
Tasks/Time 1/00:00:00.050 5 min Out 0 (0 bytes) 5 min

/ Tasks/Time 0/ 00:00:00.000 5min

Name failure, success
Queued 0 (0 bytes)

HandleHttpResponse

HandleHttpResponse 1.11.4

org.apache.nifi - nifi-standard-nar
In 1 (55 bytes) 5 min
Read/Write 0 bytes/ 0 bytes 5 min
Out 0 (0 bytes) 5min
Tasks/Time 1/00:00:00.005 5min

Figure 50. Integration Flow Example

2.5.3 API Security Gateway

The API Security Gateway (ASG) acts as a border gateway ahead of all HTTP-based API
calls to the integration flows in the Data Spine. Its role is to enforce security policies on the
service calls. In EFPF, ASG is implemented using Apache APISIX and the asg-importer
[ASGI22] microservice. Apache APISIX offers the following features:

° Speed: As the ASG will proxy calls from Data Spine to other platforms in the
ecosystem, the latency for the calls should be minimized

° Custom plugins: The ASG should depend on minimal code/configuration for the
development of custom security plugins

° License: A permissive license is preferred (Apache / MIT) for the implementation of
the ASG; and

° MQTT support.

Figure 51 compares core features of Apache APISIX and Kong 2.0 Open-Source API
Gateway [KON20].

Features Apache APISIX Kong 2.0
Technology Nginx, etcd (for service discovery) Nginx, Postgres
Latency 0.2 ms 2ms

Plugin setup Minimal effort Multiple file changes
Plugin hot-loading Yes No

MQTT support Yes No

License Apache 2.0 Apache 2.0

Figure 51. Comparison of Apache APISIX and Kong 2.0 API Gateways

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 83 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
Due to the above advantages the ASG in EFPF is implemented using Apache APISIX.

APISIX is a cloud-based microservices API gateway that delivers the ultimate performance,
security, open-source, and scalable platform for APIs and microservices. It can be used as
a traffic entrance to process all business data, including dynamic routing, dynamic upstream,
dynamic certificates, A/B testing, canary release, blue-green deployment, limit rate, defence
against malicious attacks, metrics, monitoring alarms, service observability, service
governance, etc. Compared with the traditional API gateways, APISIX has dynamic routing
and plug-in hot loading, which is especially suitable for APl management under microservice
systems.

The asg-importer microservice was additionally developed to scan the Service Registry for
new service registrations or updates and create secure proxy endpoints for those services
in Apache APISIX. This empowers the users to secure the HTTP-based APIs exposed by
their integration flows, without the intervention of an administrator.

2.5.3.1 Architecture and Interfaces
Figure 52 shows the workflow diagram of the API Security Gateway.

TLS/SSL Protected Private Subnet
EFPF Portal/Services

1. Authentication Request

\j

EFS

ry 2. Authentication Token
(Json Web Token)

4. Token Validation and 5. Valid response

Authorization

6. Route Call to Data Spine

>
=3

3. Send Request to access the resource >
ith n
with toke AP1 Gateway Resource Server / Nifl

¥ Response fiom Data Spine

8. Send response to requester

Figure 52. General Communication Workflow involving the API Security Gateway

Moreover, Figure 52 shows the basic communication workflow around the ASG (note, ASG
is represented by the APl Gateway box in the figure).

The ASG automatically creates the routes for services that are based on the Service
Registry from the Data Spine (note, the Data Spine is represented by the Resource
Server/NiFi box in the figure). Any routes which are not exposed to the ASG will result in a
404 response (“Not found”).

The ASG has two custom plugins for security enforcement, Open ID Connect plugin and
Policy Enforcement plugin dealing with the corresponding services.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 84 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

The Open ID Connect plugin provides token introspection. The token introspection can be
done either through communicating with the identity server or importing the public key of the
token. This plugin verifies if the token is generated from the EFS identity server and does
basic authorization via JSON web token (JWT) scopes.

The Policy Enforcement plugin provides additional security for the routes defined by the
ASG. The identity server allows to define policies based on the user’s role or user’s
attributes. This plugin communicates with the policy engine to allow or reject the call based
on user’s privileges.

2.5.3.2 Configuration
The configuration of the ASG involves three main steps.

1. Configure connecting with Service Registry: Service registry contains the
services registered in the EFPF platform. The ASG performs a periodic scanning of
the services to create secure proxy routes for the services.

2. Configure Open ID connect Plugin: Open ID connect plugin performs introspection
of the EFS token. The ASG should be configured to communicate with the EFS to
validate the tokens in each API call.

3. Configure Policy Enforcement Plugin: This is a complementary plugin for the
Identity Server to enforce policies to routes exposed via the ASG. This plugin should
be configured by stating the upstream resource of the route and the scope of the
operation.

2.5.3.3 Operation

Apache APISIX and asg-importer are available as Docker containers for cloud-native
deployments. The ASG comes with the admin dashboard to monitor the operations of the
ASG. The routes will be automatically configured when enabling the connectivity to the
Service Registry. The routes will be dynamically modified as and when the Service Registry
is modified with new services. The access logs of the ASG can be exported via using the
HTTP or Kafka logger for monitoring.

Additionally, more plugins can be enabled to ensure smooth operation of the ASG, such as
IP block listing and request rate limiting plugins.

2.5.4 Service Registry

LinkSmart Service Catalog [LSC20] was chosen to realise the Service Registry component
of Data Spine. Service Catalog is the entry point for Web services, and the Service
Registration Tool (SRT) is an easy-to-use GUI for the Service Registry. The main
functionality of the Service Registry covers the lifecycle management of services, i.e., the
registration, viewing, updating and deregistration of services’ metadata. In addition, it
supports browsing of the registered service entries and provides a service filtering
functionality that can be used by service consumers to search services by known
capabilities.

Figure 53 shows the flow of service metadata. Services that register themselves can be
discovered by other components within or beyond the local network.

The LinkSmart Service Catalog was enhanced further to fulfil the design requirements for
Service Registry mentioned in Section 2.4.1.4.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 85 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Local
Service

Local register

Service \

register

Remote
-’ R4 .
Service

e

-"‘

Service
Catalog

register\ Remote

Service

qiscovér
Local |, .-~
Service

discover

Y

Local
Service

Figure 53. LinkSmart Service Catalog

2.5.41 Architecture and Interfaces

The schema of LinkSmart Service Catalog was updated as per the design requirements
identified in Section 2.4.1.4. The new schema, depicted in Figure 54, is capable of managing
metadata for synchronous (request-response) as well as asynchronous (publish-subscribe)
type of services. This schema can be extended to include additional metadata for the entire
service or for a specific API. E.g., Figure 55 shows an extended schema for the Service
Registry to include certain attributes applicable to asynchronous services such as Factory
Connectors/Gateways.

{

"id": "string",
"type": "string",
"title": "string",

"description"”: "string",

"meta": {},

"apis": [{
"id": "string",
"title": "string",
"description"”: "string",

"protocol”: "<protocol - e.g., MQTT>",
"url": "<base url of the API>",

"spec”: {
"mediaType": "<mediaType type of the API Spec document>",
"url": "<url to external API Spec document>",
"schema": {}
¥
"meta": {}
1,
"doc": "string",

"ttl": 864000,

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 86 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

"created": "2020-06-05T15:46:36.793Z",
"updated": "2020-06-05T15:46:36.793Z",
"expires": "2020-06-06T15:46:36.793Z2"

}
Figure 54. Service Description Schema of the Service Registry
{
"id": "string",
"type": "string",
"title": "string",
"description": "string",
"meta": {
"async": {
"location": {
"description": "string",
"latitude": "string",
"longitude": "string"
¥
"manufacturer": "string"
}
}
"apis": [{
"id": "string",
"title": "string",
"description": "string",
"protocol": "<protocol - e.g., MQTT>",
"url": "<base url of the API>",
"spec": {
"mediaType": "<mediaType type of the API Spec document>",
"url": "<url to external API Spec document>",
"schema": {}
¥
"meta": {}
1
"doc": "string",
"ttl": 864000,
"created": "2020-06-05T15:46:36.793Z",
"updated": "2020-06-05T15:46:36.793Z",
"expires": "2020-06-06T15:46:36.793Z"
}

Figure 55. Extended Service Description Schema of the Service Registry

The architecture of the Service Registry and the SRT are illustrated in Figure 56. The Service
Registry provides an HTTP REST API for Lifecycle Management and Discovery of Services,
an MQTT Service Registration/De-registration API through the Data Spine Message Bus
and an MQTT Service Status Announcements API for also through the Data Spine Message
Bus. The Service Registry can be configured by using a JSON configuration file and it uses
LevelDB on-disk key-value store to persist data. Finally, the access to Service Registry’s
APls is secured by using the API Security Gateway and EFS.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 87 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Service Registry E Service Registration Tool E

Service Catalog Core E Storage E API Spec Validation Module E

MQTT
D, Connector E (O— controller E GUI Module E
PubSub

) o S

? T ;

Configuration 3\ GUI for

Loader E REST API E O.J users
REST API
for users /
services
7\ Env Var / JSON O\ AuthN

Conf.

Figure 56. Architecture of the Service Registry and the Service Registration Tool
SR’s HTTP REST API for Lifecycle Management and Discovery of Services:

Figure 57 provides an insight into the HTTP REST API of Service Registry. As illustrated,
create, read, update, and delete operations can be performed on the Service object in a
RESTful manner. The service filtering APl endpoint enables service filtering based on a
given path, operator, and value.

Examples:

e Filter all services belonging to PlatformX (convention for ‘type’ followed: <platform-
name>.<service-type>): /type/prefix/PlatformX

e Filter all services that have MQTT API(s): /apis.protocol/equals/MQTT

e Filter all services based on address meta field: /meta.address/contains/Bonn

REST Endpoint HTTP Method Description

/ GET Retrieves API index.

/{id} POST Creates new ‘Service’ object with a random UUID
(Universally Unique IDentifier).

/{id} GET Retrieves a ‘Service’ object

/{id} PUT Updates the existing ‘Service’ or creates a new one
(with the provided ID)

/{id} DELETE Deletes the ‘Service’

/{jsonpath}/{operator}/{value} GET Service filtering API endpoint

Figure 57. Service Registry HTTP REST API
Figure 58 shows the data model of the Service Registry.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 88 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Service
Catoto id: string | API
Latalog type: string
- title: string id: string Spec
id: string description: string title: string —

description: string
services: [|Service
page: integer

-"| meta: object

apis: [JAPI

description: string
protocol: string

mediaType: string
url: string

3 doc: string url: string schema: object
F;;T-pii?:é?teger ttl: integer spec: Spec object
’ 9 createdAt: string meta: object

updatedAt: string
expiresAt: string

Figure 58. Data Model of the Service Registry
The attributes are described below:
The Catalog object consists of:
. id: unique id of the catalog
. description: a friendly name or description of the service
. services: an array of Service objects
. page: the current page in catalog
. per_page: number of items in each page
. total: total number of registered services
A Service object consists of:
. id: unique id of the service
. type: type of the service, preferably in the form <platform>.<service-type>
E.g., “composition.marketplace-service”
. title: human-readable name of the service
. description: human-readable description of the service
. meta: a hash-map for optional meta-information
o apis: an array of API objects specifying the service’s APls
. doc: url to service documentation

. ttl: time in Seconds after which the service should be removed from the SR, unless it
is updated within the ttl timeframe. ttl serves as a keepalive mechanism to detect
failures/unavailability of registered services. l.e., as per the current setting, the
registered services are obliged to update themselves within the ttl. If they fail to do so,
they are concluded to be unavailable. The Service Provider based on the availability
requirements of his/her service should determine the most suitable value for the ttl of
a particular service.

. createdAt: RFC3339 time of service creation

. updatedAt: RFC3339 time in which the service was lastly updated

. expiresAt: RFC3339 time in which the service expires and is removed from the SR
An API object consists of:

. id: unique id of the API

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 89 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

. title: human-readable name of the API
. description: human-readable description of the API
. protocol: the communication protocol used by the API (E.g., HTTP, MQTT, etc.)

. url: A URL to the server/target host (E.g., https://services.example.com,
tcp://broker.example.com:1883, etc.) as defined by ‘Server Object’ in
OpenAPI/AsyncAPI specifications

. spec: the specification of the APl as per the Open APl Specification (Swagger)
standard for synchronous (Request-Response) services or the AsyncAPI Specification
standard for asynchronous (PubSub) services

. meta: a hash-map for optional meta-information
A Spec object consists of:
. mediaType: The media type for the spec url below

1. For OpenAPIl/Swagger Spec: application/vnd.oai.openapi;version=3.0 (YAML
variant) or application/vnd.oai.openapi+json;version=3.0 (JSON only variant)

2. For AsyncAPI Spec: application/vnd.aai.asyncapi;version=2.0.0 or
application/vnd.aai.asyncapi+yaml;version=2.0.0 (YAML variant) or
application/vnd.aai.asyncapi+json;version=2.0.0 (JSON only variant)

. url: url to external spec document

. schema: the JSON object for the spec can be added here in case if the external
document is not available. In case both are present, the spec in the url takes
precedence

SRT’s GUI for Service Registration:

To make it easy for human users to registration, the SRT provides a GUI as illustrated in
Figure 59 and Figure 60.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 90/ 296

http://www.efpf.org/
https://services.example.com/
https://www.iana.org/assignments/media-types/media-types.xhtml

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

eoe M~ < > 0 serverone G ¢ h + &8
‘ Service Registration Tool
Service
Service ID Service Title
example-service Example Service

Service Description

This is an example service, used to demo the SRT Tool

Service Type Service Expiration

efpf.example 1month ~

Service Documentation URL

Figure 59. Service Registration Tool's GUI: Register a Service

eee M~ < > 0 serverone % ¢ th + 88

Add API

APIID API Title

example-api-id Example Service API

API Description

This is an example API for the Example Service

APIURL API Protocol

https:// | - i HTTPS

API Spec Type API Spec Format

OpenAP| URL

API Schema

https:// I - ple-api-schema

API Documentation URL

https://s I [y ple-api-docs

Figure 60. Service Registration Tool's GUI: Register Add an API

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 91 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

SR’s MQTT Service Registration/De-registration API:

Service Registry (SR) also supports MQTT for service registration, updates, and de-
registration.

Registration: Service registration is similar to PUT method of REST API. Here, a service
uses a pre-configured topic defined in the config file (see commonRegTopics and
regTopics) for publishing the message.

Example:

mosquitto_pub -h localhost -p 1883 -t 'sr/v3/cud/reg/idl' -f
./service_object.json

Here, the service_object.json file contains the service (JSON) object.

Deregistration: The will message of the registered service is used to de-register it from the
SR. The will topic(s) are defined in the config file (see commonWillTopics and
willTopics).
Example:
mosquitto_pub -h localhost -p 1883 -t 'sr/v3/cud/dereg/idl' -m 'deleting service
with id: id1’
SR’s MQTT Service Status Announcements API

Service Registry announces the service registration status via MQTT using retain
messages.

The message topics follow following patterns:

. <topicPrefix>/<service type>/<service_id>/alive: (Retained message) The body
contains service description of alive service

. <topicPrefix>/<service type>/<service_id>/dead: (Not retained message) The body
contains service description of alive service

The retained messages are removed whenever service de-registers. The ‘topicPrefix’ can
be configured via the config file.

Examples:

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-spine-
service/eb647488-a53b-4223-89ef-63ae2ce826ae/alive’

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-spine-
service/eb647488-a53b-4223-89ef-63ae2ce826ae/dead"’

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-spine-

service/+/alive’

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 92 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/efpf.data-spine-

service/+/dead’
mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/+/+/alive’

mosquitto_sub -h localhost -p 1883 -t 'sr/v3/announcement/+/+/dead’

2.5.4.2 Configuration

The Service Catalog (SC) consumes a JSON configuration file which is shown in Figure 61.

{

"description”: "string",
"dnssdEnabled": "boolean",
"storage": {
"type": "string",
"dsn": "string"
s
"http" : {
"bindAddr": "string",
"bindPort": "int"
s
"mgtt":{
"client": {
"brokerID": "string",
"brokerURI":"string",
"regTopics”: ["string"],
"willTopics™: ["string"],
"gqos": "int",
"username": "",
"password": ""
s
"additionalClients": [],
"commonRegTopics": ["string"],
"commonWillTopics": ["string"],
"topicPrefix": "string"
s
"auth": {
"enabled": "bool",
"provider": "string",
"providerURL": "string",
"serviceID": "string",
"basicEnabled": "bool",
"authorization": {}

Figure 61: LinkSmart Service Catalog Configuration

The configuration file is primarily used to specify the configuration details of MQTT broker,
the storage, and the optional authentication provider. The attributes are explained below:

description is a human-readable description for the SC
dnssdEnabled is a flag enabling DNS-SD advertisement of the Catalog on the network
storage is the configuration of the storage backend

e type is the type of the backend (supported backends are memory and LevelDB)

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 93 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
e dsnis the Data Source Name for storage backend (ignored for memory,

"file:///path/to/1db" for leveldb)
o http is the configuration of HTTP API
e bindAddr is the bind address which the server listens on
e bindPort is the bind port
e mqtt is the configuration of MQTT API
e client is the configuration for the main MQTT client
« DbrokerlD is the service ID of the broker (Optional)
e DbrokerURI is the URL of the broker

e regTopicsis an array of topics that the client should subscribe to for
addition/update of services

= Example: "regTopics": ["topic/reg/+"]

= While publishing a service registration message over this topic, '+'
should be replaced by id of the service to be added/updated. id
passed in message payload takes precedence over id in the topic

= E.g., mosquitto_pub -h localhost -p 1883 -t
"topic/reg/custom_idl' -f ./service_object.json

« willTopics is an array of will topics that the client should subscribe to for
removal of services (Optional in case TTL is used for registration)

= Example: "willTopics": ["topic/dereg/+"]

= While publishing a service deregistration message over this topic,
'+' should be replaced by id of the service to be removed

= E.g., mosquitto_pub -h localhost -p 1883 -t
'topic/dereg/custom_idl' -m 'something'’

e qos is the MQTT Quality of Service (QoS) for all reg and will topics
e username is username for MQTT client
e password is the password for MQTT client

e additionalClients is an array of additional brokers objects.

e commonRegTopics is an array of topics that all clients should subscribe to for
addition/update of services (Optional)

« Example: same as the example for 'regTopics' above

« commonWillTopics is an array of will topic that the client should subscribe to for
removal of services (Optional in case commonRegTopics not used or TTL is used
for registration)

« Example: same as the example for ‘willTopics' above
o topicPrefix is the string describing the prefix of service announcement topics
« auth is the Authentication configuration
e enabled is a boolean flag enabling/disabling the authentication
e provider is the name of a supported auth provider

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 94 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e providerURL is the URL of the auth provider endpoint

« servicelD is the ID of the service in the authentication provider (used for validating
auth tokens provided by the clients)

e DbasicEnabled is a boolean flag enabling/disabling the Basic Authentication
e authorization - optional, see authorization configuration

All configuration fields (except for arrays of objects) can be overridden using environment
variables. E.g.: SC_STORAGE_TYPE=leveldb

Having configured the Service Catalog in this way, the next step is to secure access to its
APIs. To secure the REST API, proxy endpoints are configured for its REST endpoints in
the API Security Gateway and access policies are defined in the EFS. The access to its
MQTT APIs is secured by the policies configured in EFS; however, the access is not
enforced using the API Security Gateway but using the Message Bus itself. The SC
subscribes to or publishes to the Message Bus using keys that are issued by the Message
Bus when the corresponding topics are created by calling Message Bus’s HTTP API. The
service providers who want to register their services by publishing through the MQTT API
or the users who want to subscribe to the service status announcements need to obtain the
respective keys by calling Message Bus’s HTTP API through the API Security Gateway.

2.5.4.3 Operation

When a call is made to an endpoint of Service Catalog’s proxy API in the APl Security
Gateway (ASG) with an EFPF token, the API Security Gateway checks for authentication
and authorization with the EFS. Upon receiving a positive reply from the EFS, ASG invokes
the corresponding endpoint of the Service Catalog. The Service Catalog processes the call
and returns the reply to its caller, the ASG. The ASG then forwards this reply to the original
caller.

For registrations through MQTT API, the user/client publishes the service object over the
preconfigured registration topic to the Message Bus with the given key, the Message Bus
verifies the key for authentication and authorization and once verified, the message is
published. The Service Catalog receives this message from the Message Bus, and the
service is registered. The Service Catalog publishes the service status announcements to
the Message Bus over the preconfigured topics using the given keys, the users/clients need
to subscribe to these topics using the keys issued by the Message Bus.

2.5.5 Message Bus

RabbitMQ [RMQ20] Message Broker satisfies the design requirements the Data Spine
Message Bus enlisted in Section 2.4.1.5. RabbitMQ is a message broker or message-
oriented middleware that implements AMQP (Advanced Message Queuing Protocol) 0-9-
1. It is one of the most popular and most widely deployed open-source message broker.
Many partners involved in the EFPF project, especially the partners that provide Factory
Connector/Gateway solutions had first-hand experience with using RabbitMQ and also
RabbitMQ is being used for supporting asynchronous communication in COMPOSITION
and SMECIluster platforms. Therefore, RabbitMQ was first chosen for experimentation in the
EFPF project and with a positive first-hand experience, was selected to realise the Message
Bus.

Some of the features of RabbitMQ and their significance in EFPF are explored below:

e Support for protocols

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 95 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e In EFPF, we primarily make use of MQTT, MQTTS and AMQP (0-9-1)

e RabbitMQ supports AMQP 0-9-1 inherently and AMQP 1.0 and MQTT/MQTTS via
plugins

e It also supports STOMP, AMQP 1.0, HTTP and WebSockets

e Deployment
o Docker container has been selected as a deployment unit in EFPF
« RabbitMQ’s Docker images are made available with each release

e Management and Monitoring

« RabbitMQ provides a management GUI and an HTTP-based API for administration,
management and monitoring of channels/topics, users, dataflow stats, etc. via a
plugin.

e In addition, RabbitMQ also provides management command line tools such as
‘rabbitmgadmin’ and ‘rabbitmqctl’ that enable easy administration.

e Identity and Access Management

e RabbitMQ supports multiple SASL (Simple Authentication and Security Layer)
authentication mechanisms out of which, three are built into the server - PLAIN,
AMQPLAIN and RABBIT-CR-DEMO and one ‘EXTERNAL’ is supported via a plugin.
More such authentication mechanisms are supported via plugins. In essence,
RabbitMQ supports widely used password-based, token-based and client
certificates-based authentication.

« RabbitMQ also supports multitenant authorization with the help of ‘virtual hosts’
which enable logical grouping and separation of resources such as connections,
exchanges, queues, bindings, user permissions, policies, etc.

e Performance and Scalability
o RabbitMQ supports clustered deployment for high availability and throughput.

e Extensibility, Tools & Plugins

« RabbitMQ’s flexible plug-in-approach supports extension of functionality through the
use of plugins.

« It provides official client libraries for many programming languages and also various
developer tools for supporting frameworks such as the Spring Framework.

e Documentation

e« The documentation provided by the RabbitMQ developers and community is
comprehensive and it covers tutorials and guides from installation, setup, and usage
of RabbitMQ to developments of new plugins.

2.5.5.1 Architecture and Interfaces

RabbitMQ is an implementation of the AMQP 0-9-1 protocol. The AMQP 0-9-1 model
followed by RabbitMQ is shown in Figure 62. The model defines messaging brokers that act
as middleware, publishers/producers that publish messages to the messaging brokers and

these messaging brokers route these messages to the consumers/subscribers. The
. ___

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 96 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

messages are published to ‘exchanges’ component of RabbitMQ, the exchanges then route
the messages to ‘queues’ based on routing rules called ‘bindings’. RabbitMQ then pushes
these messages in the queues to the subscribers or these messages can even be pulled on
demand by the subscribes. RabbitMQ also uses message acknowledgments to ensure
reliable exchange of messages over unreliable networks. The subscriber application notifies
the broker as soon as it receives a message and then only the broker will remove those

messages from a queue.
PRODUCER X

e Y

BROKER
Binding Key Routing
BINDINGS pattern J x
PDF process eu.de.” us.#
QUEUES (Queuel) (Queue2) (@3) (¢) (@5) (a8)
Y5 RabbitMQ
\ S

CONSUMER %

Figure 62. AMQP 0-9-1 Model Followed by RabbitMQ [CAQ20]

These exchanges are of different types and the type of an exchange is specified when it is
created:

In ‘Direct’ type of exchanges, the message is routed to the queue whose binding key exactly
matches with the routing key of the message. In “Topic’ type of exchanges, a wildcard match
between the routing key of the message and the routing pattern specified in the binding is
done by the exchange. In ‘Fanout’ type of exchange, messages are routed to all of the
queues bound to the exchange. In ‘Header’ type of exchange, the messages are routed
based on message header attributes.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 97 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Work Queues
(Competing Consumers Pattern)

OF RGECE B

Basic Async Messaging

Publish Subscribe Routing
amgp.gen-59b...
o type=direct nlu amgp. g? -Agl...
o error
— warnng
Topics RPC

(Request Reply Pattern)
a rpc_queue

opecipe +conse [@ e
o orage cient [y sosspgorsae. TR —_ s
= ". Q2 correlation_id=abc
reply_to=amaq.gen-Xaz2...
Reply
correlation_id=abc

Figure 63. RabbitMQ Messaging Patterns [RMP20]

RabbitMQ supports several messaging patterns as shown in Figure 63. It supports the basic
asynchronous pattern where it provides a queue to which a publisher can publish a message
and the subscriber can receive it through the broker's queue. The Work Queues or
Competing Consumer pattern enables distribution of messages/tasks among several
consumers/workers. The Publish Subscribe pattern enables the dispatch of messages to
many consumers at once. The Routing pattern enables the selective routing of messages
to different queues. The Topic pattern enables routing of messages to different queues
based on patterns/topics. RabbitMQ also supports the RPC or Request-Response pattern
that supports call-backs and also the Publisher Confirms pattern to enable reliable
publishing of messages.

RabbitMQ offers multiple command line tools that provide CLIs for service management,
general operator tasks, diagnostics and health checking, plugin-management, maintenance
tasks on queues and related to upgrades, and, for management and monitoring of RabbitMQ
nodes and clusters. The primary RabbitMQ CLI tool ‘rabbitmqctl’ provides an interface for
managing RabbitMQ nodes and clusters. Its CLI supports user management which
provides commands for adding users, authenticating users, updating passwords, listing
users, setting user tags, etc. The CLI also supports many other functionalities such as
access control, monitoring, observability and health checks, management of runtime
parameters and policies, management of virtual hosts, configuration, etc.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 98 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Nt
m P\ a \:) Q lt 3.7.18 Erlang 22.0.7

Overview
Totals

Queued messages last minute ?

100

Read: 81

75 ¥

50 Unacked 0

25

10 - Total ms1

16:10:30 16:10:40 16:10:50 16:11:00 16:11:10 16:11:20
Message rates last minute ?
A Publish 1.4/s Deliver H2.4/s Get Diskread = M 0.00/s
G TNt e e] (auto ack) ol (manual 0.00/s

Publisher y ack) Disk write 0.00/s
0.00/s -
confirm Consumer
W 0.00/s

0.0/s ack Get (auto B 0.00/

16:10:30 16:10:40 16:10:50 16:11:00 16:11:10 16:11:20 Deliver ack) Al es

(manual W 0.00/s Redelivered W 0.00/s
ack) Return M 0.00/s

Global counts ?

Connections: 16 Channels: 16 Exchanges: 27

Nodes
Name File descriptors ? Socket descriptors ? Erlang processes Memory ? Disk space Uptime Info Reset stats i
rabbit@iwbroker 58 18 750 85MiB 24GiB 30d th | basic (disc 4 'rss All nodes

Churn statistics

Ports and contexts

Export definitions

Import definitions

HTTP API Server Docs Tutorials Community Support Community Slack Commercial Support Plugins GitHub Changelog

Figure 64. RabbitMQ Management GUI

RabbitMQ’s Management plugin provides an HTTP API, a Web-based GUI (Figure 64) and
a CLI for management and monitoring of RabbitMQ nodes and clusters. The CLI is
provided via a command line tool ‘rabbitmgadmin’. rabbitmgadmin provides capabilities to
list exchanges, queues, bindings, vhosts, users, permissions, connections and channels,
view overview information, declare and delete exchanges, queues, bindings, vhosts, users
and permissions, publish and get messages from queues, close connections, import and
export configuration, etc. The HTTP API is primarily used for monitoring and alerting
purposes. It can be used to collect data related to the state of nodes, connections,
channels, queues, consumers, etc. and aggregate it periodically. These stats can be used
for alerting, visualization, monitoring, analysis, etc. through the provided GUI or through
external monitoring systems such as Prometheus and Grafana or ELK stack. The
management GUI is a single page application that consumes the HTTP API. It is intended
to be used for monitoring and debugging purposes.

2.5.5.2 Configuration

RabbitMQ ships with built-in settings that are most commonly used across applications by
default. These can be used readily for environments such as Development and Testing
where performance and fine tuning is not very essential as compared to the functioning. For
performance and security critical environments such as Production, RabbitMQ provides
ways through which the broker server and the plugins can be configured. These
configuration mechanisms for RabbitMQ include configuration files, environment variables,
command line tools such as rabbitmqctl, rabbitmg-queues, rabbitmg-plugins, rabbitmqg-

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 99 /296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
diagnostics, etc. The compilation of the exact configuration details for RabbitMQ to be used

in the Production environment of EFPF are work in progress.

After the initial setup and deployment related configuration is done, some design-time setup
activities need to be performed which are a prerequisite to RabbitMQ’s operation. RabbitMQ
supports multi-tenancy through the use of virtual hosts or vhosts. When the RabbitMQ server
is started for the first time, it realises that the database is uninitialized or has been deleted
and creates (i) a fresh database, (ii) a default /' vhost and (iii) a default ‘guest’ user with full
access to the /' vhost. For security reasons, by default, the guest user can only operate from
localhost. New vhosts need to be created or the default 7’ vhost can also be used prior to
the run-time operation. New users that can connect from remote hosts need to be created
and they need to be given access permissions to specific vhosts for performing specific
operations. This pre-configuration of a number of vhosts, users and user permissions is
called ‘seeding’ operation. Such a seeding operation is typically done for production
environments. This kind of seeding can be done with the help of various command line tools
provided by RabbitMQ.

Once these design-time configurations on the broker side are done, the client sides can
establish connections with it. The clients can make use of client libraries provided by
RabbitMQ or any other tools to interface with the broker. Every client connection with the
broker has an associated user and an associated vhost. The user is authenticated by the
broker and its access permissions for that vhost are examined for authorization. There are
two primary ways of authentication: username-password and X.509 certificates. RabbitMQ
enforces access control in a layered fashion. The first layer of authorization checks whether
the user has access to the specified vhost or not. The second layer is concerned with
checking user access to resources such as exchanges, queues, etc. and operations to be
performed on them.

Use of the Pub/Sub Security Service for Design-time Access Configuration

RabbitMQ provides the administrators with a management GUI that can be used to create
user accounts, vhosts, topics, assigning publish/subscribe permissions for topics to different
users, etc. However, this involves intervention from the administrators, making the process
slow and inefficient. In addition, the data publishers cannot be in directly control of
determining who is authorized to use their data. This process was automated using the
Pub/Sub Security Service. At design-time, the user can get a new user account for
RabbitMQ, and/or pub/sub permissions for the topics of interest using the Pub/Sub Security
Service’s GUI and at runtime, the user’s tool can be configured to pub/sub directly to
RabbitMQ over those topics. The Pub/Sub Security Service’s interfaces and its interactions
with the Message Bus RabbitMQ are described further in Sections 3.2.1.4 and 3.3
respectively.

Configuration of Operator Policies

In the EFPF ecosystem, the Message Bus RabbitMQ can experience a very high volume of
data at times. To deal with such high data volumes, the Data Spine components including
RabbitMQ are deployed in a clustered fashion using the Docker Swarm technology. In
addition, to prevent running out of memory and disk space, and ensure a fair distribution
and usage of available resources, RabbitMQ enables the administrators to configure
operator policies. The operator policies are also useful for clearing out unused queues and
message and queue indices from the persistence layer. Figure 65 illustrates the four types
of operator policies that can be set and Figure 66 illustrates the scripts that can be used to
set these policies for all vhosts using the rabbitmqctl CLI tool.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 100/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Virtual Host Name Pattern Apply to Definition Priority Clear

default_vhost queues-expires-1-hour K queues expires: 3600000 0
default vhost queues-max-length-10-messages .* queues max-length: 10 0
default_vhost queues-max-length-bytes-50-MiB .* gueues max-length-bytes: 52428800 0
default_vhost | queues-message-ttl-1-hour e queues message-ttl: 3600000 0

Figure 65. Sample Operator Policies for RabbitMQ

#!1/bin/bash

set queues-expires-1-hour policy for all vhosts

rabbitmgctl --silent list vhosts name | awk '{ print $1 }' | xargs -L1 rabbitmqctl
set_operator_policy queues-expires-1-hour ".*" '{"expires": 3600000}' --apply-to
queues -p

set queues-max-length-10-messages policy for all vhosts

rabbitmgctl --silent list vhosts name | awk '{ print $1 }' | xargs -L1 rabbitmqctl
set_operator_policy queues-max-length-10-messages ".*" '{"max-length": 10}' --apply-
to queues -p

set queues-max-length-bytes-50-MiB for all vhosts

rabbitmgctl --silent list vhosts name | awk '{ print $1 }' | xargs -L1 rabbitmqctl
set_operator_policy queues-max-length-bytes-50-MiB ".*" '{"max-length-bytes":
52428800} ' --apply-to queues -p

set queues-message-ttl-1-hour for all vhosts

rabbitmgctl --silent list _vhosts name | awk '{ print $1 }' | xargs -L1 rabbitmgctl
set_operator_policy queues-message-ttl-1-hour ".*" '{"message-ttl": 3600000}' --
apply-to queues -p

Figure 66. Sample Script to Set the four Operator Policies for all the Existing Vhosts using
the rabbitmqctl CLI Tool
2.5.5.3 Operation

Once the configuration on both the RabbitMQ side and the clients’ side is done, the
communication can start. In the case of MQTT, after getting the necessary access
permissions, the clients can directly publish and subscribe to the intended topics and can
exchange data through the broker. In the case of AMQP, a few more steps are involved:

1. A TCP connection is set up between the client application and RabbitMQ where the
key/credentials, connection URL, port, etc. is specified by the client.

2. The connection interface is used to create a channel in the TCP connection. Messages
can now be sent or received through this channel.

A gueue is declared or created if it does not exist.
An exchange is declared and setup.
The exchange is bound to a queue.

o 0 bk~ w

The publisher publishes message to the exchange and the consumer consumes it from
the queue.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 101/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
7. The channel is closed followed by the connection.

2.5.6 Summary

Figure 67 illustrates the technologies selected to realise the components of the Data Spine
and mapping between the concepts and terminologies. The integration flows of the IFE are
realised using the dataflows in Apache NiFi, the Protocol Connectors are realised using NiFi
processors such as HandleHTTPRequest, InvokeHTTP, ConsumeMQTT, PublishMQTT,
etc., while the Data Transformation processors are realised using NiFi processors such as
Jolt, TransformXml, ExecuteScript, etc.

3rd Party Platforms Factories h
EFPF Platform
Platform X Platform Y Factory 1
(] (o] @] ||

A Y

A4
[Apache APISIX & asg-importer A]

APISIX
HandleHTTPRequest, InvokeHTTP, etc. in NiFi]—w
ra— \
Jolt, TransformXml, CpeHne s 1
ExecuteScript, etc. in 1 17 Dataflow in NiFi]
. NiFi n I ‘
Data Spine
PublishMQTT, ConsumeMAQTT, etc. in NiFi]_J
\‘_)
Keycloak EI0STTET =2 e RabbitMQ
Catalog m <

[#) OAK BhRabbitV0 ==

[Apache APISIX & asg-importer A]
APISIX
A A A

ey

COMPOSITION
Base Platforms

1dP Service ’ ‘ Service ’ ‘ @4—'—/
DIGICOR

NIMBLE vf-OS

Figure 67. Data Spine Realisation & Mapping of Concepts

Figure 68 further illustrates how the Data Spine components interact with each other and
how synchronous and asynchronous services interface with the components of the Data
Spine. The methodology for integration of services through the Data Spine is described in
detail in Section 2.8.

In this way, the Data Spine provides the necessary integration infrastructure to bridge the
interoperability gaps between heterogeneous services and enables communication in the
EFPF ecosystem.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 102/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Data Spine (DS) = | ‘
RabbitMQ «Servicen
API Proxy Async
— 1 0O PO service
s | O) l s1
Management . SR API
GUI O) API Security Proxy
. Gateway O‘\ register.
(O——7—| EFPF Security API exposed by (Apache APISIX 2
Portal (EFS) ——— | Flows (iFlow API) & asg-importer) iFlow AP
(Keycloak) Proxy
REST r, ; :
API S2 API d) S2's REST E
Proxy API «Servicen
GUI access- C: __ | | Sync/iAsync
protected by E Service
Integration Flow Engine & | pub/sub py | b | S2
. Service
(Apache NiFi) Registry (SR) (P HTTP API
(Linksmart
> Al
. Pub/Sub
Integration API
Flows Message Bus O
(© (iFlows) | (RabbitMQ) }_
GuI sub/pub “SS‘”‘"CE”
ync
Service
‘ 83

GUI é)

Figure 68. Interfacing of Sync and Async Services with the Data Spine Components

2.6 Deployment

The deployment is the process of making an application work on a specific target
environment. Deployment refers to a set of activities which start from the code release (once
a consistent version of a software code is ready to be executed) up to the execution
beginning of the application on the target (physical or virtual) machine.

Usually, this operation is automated using deployment pipelines, a system of automated
processes designed to transfer the new code modification quickly and accurately from the
repository to the execution environment. During the pipeline, the code is analysed and
verified against coding standards. Unit testing of the compiled binaries are performed to be
sure that the released software meets the functional and performances requirement.

The pipelines can also be split in two main categories:

e Continuous Integration (CI) Pipelines: A set of operation in which all the developers
merge code changes in a central repository. Each code change triggers an automated
build and test system to provide feedbacks to the developer who made the change.

e Continuous Delivery and Deployment (CD) Pipelines: A set of operation to move the
built code to the target environment, which can be the staging environment (to perform
the final tests and make the software ready for the production environment) or directly
the production environment, if the acceptance tests have already been executed.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 103/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

CONTINUQUS INTEGRATION

BUILD == UNIT TEST |[—]» DE;.'F;’JETO [ACCEE;‘:‘_NCE
CONTINUOUS DELIVERY

suio || wwrres |f PELOYTO | | ACCEPTANCE | | DELoYTO
CONTINUQUS DEPLOYMENT

suo |5 uwmrest |l DEPLOYTO | AccEPTANCE | | DEmLovre
—» -
AUTO MANUAL

Figure 69. Continuous Integration, Delivery and Deployment Pipelines

The EFPF ecosystem is composed by a set of software components that need to be
deployed and kept updated over the time. A centralized Gitlab repository contains all the
tools and configuration necessary to deploy or update a component to the corresponding
environment (test and production). A high-level overview of the EFPF CI/CD Pipeline system
is shown in Figure 70.

DEPLOY TO
PRODUCTION

=
% GITLAB > BUILD > CONFIGURE || DEPLOY TO TEST [—»ACCEPTANCE TEST|>

Push code or new
configurations

Developer

Figure 70. High-level Overview of the EFPF CI/CD Pipeline System
All the related operations are described in Figure 71:

Cl/CD Tool Description
Operation
BUILD Docker The EFPF Components have been delivered as Docker
Containers, therefore, a Dockerfile is responsible to
produce the artifacts
CONFIGURE Ansible + Docker Compose The software is pre-configured using a set of ansible

scripts, in combination of other specific Container's
configurations described by the docker-compose file
(produced by the ansible script itself)

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 104 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

- 0000000}
DEPLOY TO TEST Gitlab CI/CD Pipelines The tools provided by GitLab (Gitlab CI/CD System) are
responsible to transfer all the artifacts and their
configuration files to the target machine and execute the

boot up of the service

ACCEPTANCE Human validation of the system + | Once the service has been deployed, a first human
TEST automatic tests evaluation is performed to ensure the correctness of the
deployment in terms of functionalities. Moreover, a
periodic execution of some tests ensure that the system is
constantly up and running as expected

DEPLOY TO Gitlab CI/CD Pipelines The tools provided by GitLab (Gitlab CI/CD System) are
PRODUCTION responsible to transfer all the artifacts and their
configuration files to the target machine and execute the
boot up of the service

Figure 71. EFPF CI/CD Pipeline Operations

Initially, at the beginning of the project, the deployment was completely distributed with each
technical partner providing hosting and using the in-house deployment process for their
components. With the development of the EFPF DevOps architecture with defined container
management and deployment pipeline, the Ecosystem Enablers have been migrated to this
deployment infrastructure using the Data Spine as an architecture proof-of-concept and
template. The deployment of the core Ecosystem Enablers is now centralized and co-
ordinated using the deployment pipeline. More details on the Data Spine deployment can
be found in ‘D6.2: EFPF Integration and Deployment - Final Report’.

2.7 Testing Scenarios & Framework

The successful operation of the Data Spine depends upon the correctness of the integration
of its components. Therefore, after a fresh deployment and initial setup, or after the
upgradation of one or more components, it becomes very important to ensure that the Data
Spine continues to provide the expected functionality. The automated Integration Testing
Framework runs the predefined integration tests to ensure this. In addition, as Data Spine
is deployed as a cloud-native component, it must be highly performant. The Performance
Testing Framework in EFPF runs stress/load tests to evaluate the Data Spine’s performance
and recognizes needs for infrastructure upgradation, if any.

2.7.1 Integration Testing Scenarios

The testing scenarios for the Data Spine are of two types:

1. Integration Testing Scenarios: To test the correction of deployment and configuration
of the individual components of the Data Spine, integration testing scenarios were
defined.

2. System Testing Scenarios: To test the correctness of the integrated Data Spine stack,
system scenarios were defined.

These testing scenarios have been included in Annex C to ensure readability of the
document.

2.7.2 Integration Testing Framework

In order to implement the selected Integration Testing scenarios, the choice for the platform
to run them on has fallen on the GitLab CI/CD infrastructure. A dedicated GitLab project has
been created for this purpose. More details about how to run these tests is provided in the
deliverable ‘D6.2: EFPF Integration and Deployment - Final Report’.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 105/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Since the Integration Testing scenarios have been implemented using the Python language,
in order to run those tests, it has been required to create containers containing the
appropriate packages and libraries for each scenario. The GitLab CI/CD Pipeline
configuration is mentioned in Figure 72 below:

GitLab CI/CD Pipeline config

service-registry:
stage: test
when: manual
image:
name: python:3.8
script:
- cd service-registry
- pip install -r requirements.txt
- python ./src/main.py $EFS_URL $CLIENT_SECRET $BROKER_URL $BROKER_PORT $BROKER_U
SER $BROKER_PASS $TOKEN_ADMIN_USER $TOKEN_ADMIN_PASS
tags:
- container

efs:
stage: test
when: manual
image:
name: python:3.8
script:
- cd efs
- pip install -r requirements.txt
- python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN_USER $TOKEN_ADMIN_PAS

tags:
- container

api-security-gateway:
stage: test
when: manual
image:
name: python:3.8
script:
- cd api-security-gateway
- pip install -r requirements.txt
- python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_BASIC_USER $TOKEN_BASIC_PAS

tags:
- container

message-bus:
stage: test
when: manual

image:
I ——

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 106 / 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

e
name: python:3.8
script:
- cd message-bus
- pip install -r requirements.txt
- python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN USER $TOKEN_ADMIN_PAS
S $TOKEN BASIC_USER $TOKEN BASIC_PASS
tags:
- container

data-spine:
stage: test
when: manual
image:
name: python:3.8
script:
- cd data-spine
- pip install -r requirements.txt
- python ./src/main.py $EFS_URL $CLIENT_SECRET $TOKEN_ADMIN_USER $TOKEN_ADMIN_PAS
S $TOKEN_BASIC_USER $TOKEN_BASIC_PASS
tags:
- container

Figure 72. GitLab CI/CD Pipeline Configuration for the Data Spine Integration Testing
Framework

2.7.3 Performance Testing Scenarios

The performance testing focus on the core of the EFPF infrastructure, the Data Spine, and
its components. Since the goal of these tests is to test the platform as a whole, three
scenarios of testing have been identified:

e Backend synchronous communication scenario
e Backend asynchronous communication scenario
e Frontend interaction scenario

The first two scenarios cover the two communication ways in which the Data Spine can be
involved. These scenarios cover the communication between different tools and services.
The third scenario covers instead the situation in which users interact directly with the
platform’s user interface endpoints.

2.7.4 Performance Testing Framework

A similar approach was chosen for the performance testing as for the integration testing.
The k6 framework has been selected for implementing the performance tests. These tests
have been developed to be run inside docker containers. This allowed for an easy
distribution of these tests and for running them on Gitlab runners as well. More details about
how to run these tests are provided in the document Deliverable ‘D6.2: EFPF Integration
and Deployment - Final Report’.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 107/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

2.7.4.1 Backend Synchronous Scenario

This scenario, as illustrated in Figure 74, involves a Producer service which has been
created just for the purpose of serving a payload. This Payload consists of a JSON body
which will be requested by the Synchronous Test Service. Since this request will happen
through a NiFi register endpoint the body will have to pass through NiFi which will proxy the
request to the original service.

To add an element of complexity and to better simulate a real workflow which makes use of
the capabilities of NiFi a JOLT transformation (Figure 73) has been added to the scenario

as well.
[
{
"operation": "modify-overwrite-beta",
"spec": {
!/
// Sums
"sumIntData"”: "=intSum(@(1,intData))",
"sumLongData"”: "=intSum(@(1,intData))",
"sumDoubleData": "=doubleSum(@(1,doubleData))",
!/
// Averages
"avgIntData": "=avg(@(1l,intData))", // note this returns a double
"avgDoubleData": "=avg(@(1,doubleData))",
!/
// Sort ascending
"sortedIntScores": "=sort(@(1,intData))",
//
// Min, Max, Absolute Value
"minAB": "=min(@(1,a),@(1,b))", // should be 5
"maxAB": "=max(@(1,a),@(1,b))", // should be 10
"abs": "=abs(@(1,negative))",
//
// Divide
"aDivB": "=divide(@(1,a),@(1,b))",
"aDivC": "=divide(@(1,a),@(1,c))", // will be 3.3333
//
// Divide and Round : decimal point to round to is first param
"aDivCRounded4": "=divideAndRound(4,@(1,a),@(1,c))"

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 108/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

p—————

Figure 73. Jolt Spec for Backend Synchronous Testing Scenario

‘ Data Spine E
‘ NiFi = |
‘ Producer Service E Synchronous Test E
- HTTFP - Service
—< Req. Handler —C |
Y

¥

% JOLT Transform

Figure 74. Architecture for Backend Synchronous Scenario

2.7.4.2 Backend Asynchronous Scenario

This scenario, depicted in Figure 75 involves a Producer service which has been created
just for the purpose of serving a payload as well. In this case however the service generating
the payload consisting of a JSON body is integrated directly in the Asynchronous Test
Service.

To add an element of complexity and to better simulate a real workflow which makes use of
the capabilities of NiFi a JOLT transformation has been added to this scenario as well.

The spec of the JSON message generated for this scenario and the relative JOLT
transformation spec are the same as with the Synchronous Scenario.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 109/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

‘ Producer Service E

Data Spine

Service

Asynchronous Test E

Figure 75. Architecture for Backend Asynchronous Scenario

RabbitMQ

‘O3
h. A

MaTT
Subscribe

Ni-Fi

z

MQTT
Publish

; : JOLT Transform

A

2.7.4.3 Frontend Interaction Scenario

This scenario, illustrated in Figure 76 makes use of the capabilities of the k6 framework and
directly tests the provided endpoints of the NiFi interface. One of the capabilities of this
service is the possibility to integrate the login phase to the testing process which means that

that component is tested as well.

Data Spine

%]

Data Spine
Generic Component

2]

Ul Test Service

2]

% ul
Subcomponent

Figure 76. Architecture for Frontend Interaction Scenario

2.8 Platform/Service Integration & Dataflow through Data Spine

The high-level integration methodologies for different stakeholders in the EFPF ecosystem
are described in Section 1.6. This section focuses on describing the integration steps
specific to the Data Spine for the provision and consumption of services.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public

110/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

___|
Together with enabling cross-platform interoperability, the Data Spine also enables the

creation of cross-platforms in an easy and intuitive manner. In order to create composite
applications using the services of different platforms, those platforms need to be integrated
with the EFPF ecosystem beforehand. The prerequisite for the creation of composite
applications is the federation of the platforms’ identity providers with the EFS to enable SSO.
It is also possible to integrate the services that do not belong to any platform, or in other
words, do not have an associated identity provider, in which case the EFS becomes their
default identity provider during their integration. Once this integration is complete, the
services can be composed together using the Data Spine to create applications.

The design-time steps for the creation of composite applications and dataflow through the
Data Spine at runtime for both synchronous (Request-Response) and asynchronous
(Pub/Sub) communication patterns are described below.

Synchronous (Request-Response) Communication

Figure 77 shows how provider1’s service ‘PS1’ and consumer1’s service ‘CS1’ interact with
the components of the Data Spine, in order to provide and consume services respectively.
The actions to be performed for service provision and consumption through the Data Spine
are described below.

Data Spine (DS) E
EFS REST API E
Management 3
2] —9 £]
O_—__ O‘J\ Proxy «Service
API Securi) o provider1's
Security API exposed by Gatewayty OJ egister. service
Portal iFlows (iFlow API) iFlow API PS1
(EFS) Proxy
REST /7 ; ::
API PS1's REST
/}f’l
2 | -
Al v Integration Flow Engine E pub/sub rH
protected by Service HTTP API
| Registry ﬁ)
- £]
1
O Integration Pub/Sub
] Flows API
. «Servicen
GUI (iFlows) Message Broker —O T
service
SC1

Management é
Gul

Figure 77. Synchronous Services’ Integration through the Data Spine

Prerequisites:

e« The service provider ‘provider1’ and service consumer ‘consumer1’ both have user
accounts for the EFS.

o providerl and consumerl have the necessary permissions required to access the

Service Registry.
. ___

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 111/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Design-time service integration activities:

1. Service Registration: provider1 registers his/her service ‘PS1’ to the Service Registry
with an appropriate service ‘type’ (e.g., ‘marketplace-service’). Here, PS1’'s REST API
endpoint, EP1 is already secured by its platform’s identity and access management
service (not shown in the figure for simplicity).

2. Service Lookup and Metadata Retrieval: consumer1 uses Service Registry’s filtering API
to find PS1, decides to consume it, and retrieves its technical metadata including its API
spec from the Service Registry.

3. Access Configuration: consumerl requests for and acquires the necessary access
permissions to invoke EP1.

4. Access Configuration: consumerl requests for and acquires a development space in the
IFE to create integration flows.

5. Integration Flow Creation: consumerl creates an integration flow using the GUI of the
IFE that invokes EP1, performs data transformation to align request/response payload
to its own data model/format, and finally creates and exposes an “interoperability-proxy”
endpoint EP1-C for EP1.

6. Service/APIl Registration: consumerl registers this new EP1-C API endpoint to the
Service Registry.

7. Creation of a Secure Proxy APl: ASG automatically creates a secure proxy APl endpoint
EP1-Cr for EP1-C.

8. Access Configuration: consumerl requests for and acquires the necessary access
permissions to invoke EP1-Cp.

9. Integration Complete: provider1’s service PS1 and consumer1’s service CS1 are now
integrated through the Data Spine and CS1 can start invoking PS1 and obtain a response
in the format required by it as illustrated in Figure 78.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 112/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Service Consumer consumer1's
Data Model: cDM Ser\nce CS‘]

L

API Security Gateway (ASG) EP1-Cp
Service
Registry
EP1-Cp
EP1-C / \ v
Security Portal
Response Request
transformation: ion:

transformation:

A

EP1

Integration Flow
.

pDM — cDM cDM — pDM
Invoke EP1

L Integration
. Flow Engine
Data Spine
O EP1

. DM - Data Model
Service Provider provider1's EP - Endpoint

Data Model: pDM service (PS1) EP,_EP's Proxy EP

Figure 78. Example of Synchronous Communication Dataflow through the Data Spine
Asynchronous (Pub/Sub) Communication

Figure 79 shows how publisher1’s service ‘pub1’ and subscriber1’s service ‘sub1’ interact
with the components of the Data Spine to provide and consume services, respectively. The
actions to be performed for service provision and consumption through the Data Spine are
described below.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 113/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

Data Spine (DS) E
EFS REST API E
Management
Gul E 4@_ SR AP E
O— Proxy «Service
) API Security 1\ ictar publisher1's
Security — Gateway O_/ & service
Portal pub1
(EFS)
REST |
API T pub
| e Integration Flow Engine E E pub/sub fl\
protected by Service HTTP API
| Registry CP
- £]
Integration Pub/Sub) E
() s API «Services
Flows) subscriber1's
GUI (iFlows) Message Broker @®); S corvice
sub/pub sub1

GuI d)

Figure 79. Asynchronous Services’ Integration through Data Spine
Prerequisites:

e The service provider ‘provider1’ and service consumer ‘consumer1’ both have user
accounts for the EFPFInterop Security Portal.

e providerl and consumerl have the necessary permissions required to access the
Service Registry.

Design-time service integration activities:

1. Access Configuration and MB User Account: publisherl visits the Pub/Sub Security
Service Dashboard. A new Message Bus (MB) user account and company vhost
would be created for publisherl if it does not exist already. Otherwise, publisherl will
be granted access to the existing company vhost. publisherl then uses the Pub/Sub
Security Service Dashboard to register their service ‘pub1’ and create a topic
‘companyx-com/p1/DDATA/topic1’ in the MB for it to publish to. The credentials and
configuration details needed to publish to the MB are then requested in the Pub/Sub
Security Service.

2. Publisher Configuration: publisher1 configures his/her service ‘pub1’ to publish to the
Message Bus over the topic ‘companyx-com/p1/DDATA/topic1’ using the credentials
and configuration details obtained from the Pub/Sub Security Service.

3. Service Registration: publisherl registers publ that consists of this Pub/Sub API
containing its publication information to the Service Registry.

4. Service Metadata Retrieval: subscriber1 decides to subscribe to pub1’s topic
‘companyx-com/pl/DDATA/topic1’ and gets the technical metadata for pub1
including its API spec from the Service Registry.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 114/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

5. Access Configuration: subscriber1 wants to subscribe to topic ‘companyx-
com/p1/DDATA/topic1’, perform data transformation using the Integration Flow
Engine, and publish back transformed data to the MB over the topic ‘companyz-
org/s1/DDATA/topic1’.

6. Access Configuration (and MB User Account): subscriberl visits the Pub/Sub
Security Service Dashboard. A new Message Bus (MB) user account and company
vhost would be created for subscriberl if it does not exist already. Otherwise,
subscriberl will be granted access to the existing company vhost.

7. Topic Subscription: subscriberl visits the Pub Sub Security Service Dashboard and
searches for the topic ‘companyx-com/p1/DDATA/topic1’ in the View Topics page.
subscriber1 then selects the request consume permission button for topic ‘companyx-
com/p1/DDATA/topic1’. subscriber1 then waits for approval from the topic owner and
downloads the credentials/configuration details needed to subscribe to the topic.

8. Topic Creation: subscriberl uses the Pub/Sub Security Service Dashboard to register
their iFlow and creates a topic ‘companyz-org/s1/DDATA/topic1’ for it to publish to.
subscriberl then downloads the credentials/configuration details needed to publish
to topic ‘companyz-org/s1/DDATA/topicl '

9. Access Configuration: subscriberl requests for and acquires the necessary access
permissions to create integration flows in the Integration Flow Engine (NiFi)
component of Data Spine. (Details: DS NiFi User Guide)

10.Integration Flow Creation: subscriberl creates an integration flow using the GUI of
the Integration Flow Engine to subscribe to ‘companyx-com/p1/DDATA/topic1’,
perform data transformation and finally to publish the resulting data to the Message
Bus over the topic ‘companyz-org/s1/DDATA/topic1’ using the
credentials/configuration details provided by the Pub Sub Security Service.

11.Service Registration: subscriberl registers his/her service with the APIs containing
its subscription and publication information to the Service Registry.

12.Integration Complete: publisher1’s service and subscriber1’s service are now
integrated through the Data Spine and, subl can subscribe to the topic ‘companyz-
org/s1/DDATA/topic1’ and obtain data in the format required by it as illustrated
in Figure 80.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 115/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

subscriber1's

Operation: subscribe

Data Model: sDM Sanies Topic: companyz-org/s1/DDATA/topic1

sub1

Service Registry
Operation: publish

~
Registrations of services with topics Topic:)
specified in API specs: . companyz-org/s1/DDATA/topic1 R

o publish >
publish: companyx- g A
com/p1/DDATA/topic1 (mandatory) = 2
subscribe: companyx- E 8
com/p1/DDATA/topic1 (recommended) Q
publish: companyz- é § < 6DM —> SDM Message
org/s1/DDATA/topic1 (mandatory) 3 Bus
subscribe: companyz- 3 B

i j

org/s1/DDATA/topic1 (recommended) = E A Operation: subscribe

54 Topic:

] companyx-com/p1/DDATA/topic1

subscribe <
|
Data Spine Integration Flow Engine

publisher1's
service
pub1

Operation: publish

Data Model: pDM Topic: companyx-com/p1/DDATA/topic1

Figure 80. Example of Asynchronous Communication Dataflow through the Data Spine

2.9 Data Spine Usage in Pilots and Open Call Experiments

The Data Spine was and remains extensively used in the pilots as well as in the Open Call
experimentation scenarios. In order for the pilots and Open Call experimentation activity to
have a smooth start, comprehensive documentation and examples were published onto the
EFPF Dev-Portal and active support was / is being given during the experimentation phase.
Figure 81 illustrates the usage of Data Spine components for realising the pilot use case
scenarios. Moreover, all the Open Call experimenters are making use of the Data Spine
components in their experiments. A brief description of dataflows and data models used in
these scenarios can be found in Sections 1.4 and 4 where the usage of Data Spine is also
highlighted. The detailed description of these scenarios and their implementation details can
be found in the respective pilot and Open Call deliverables.

No Solution Relates to Data Spine Components Used
Pilot
S la @ Solution la: Furniture Message Bus, Integration Flow Engine, EFPF Security
Production Optimisation Portal (EFS), Service Registry
(Predictive Maintenance)
S 1b | Solution 1b: Furniture Message Bus, EFPF Security Portal (EFS), Service
Production Optimisation Registry
(Operator Error)
S2 Solution 2: Furniture Message Bus, Integration Flow Engine, EFPF Security
Bin Fill Level Monitoring CE Portal (EFS), Service Registry
S3 Solution 3: Furniture EFPF Security Portal (EFS), Service Registry
Workflow and Service Aero-space

Automation Platform

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 116/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

S4 Solution 4: Aero-space EFPF Security Portal (EFS), Service Registry
Matchmaking Service CE
S 5a | Solution 5a: Aero-space Message Bus, Service Registry

Efficient Resources
Management Solutions
(Visual Detection)
S5b | Solution 5b: Aero-space Message Bus, Service Registry
Efficient Resources
Management Solutions
(Stores Monitoring)

S6 Solution 6: Aero-space Message Bus, Integration Flow Engine, EFPF Security
Workplace Environment Portal (EFS), Service Registry
Monitoring

S7 Solution 7: All domains EFPF Security Portal (EFS), Service Registry
Tendering & Bid Management

S8 Solution 8: All domains Message Bus, Integration Flow Engine, EFPF Security
Almende Risk Analysis & Portal (EFS), Service Registry
Management (ROAM) Tool

S9 Solution 9: All domains EFPF Security Portal (EFS), Service Registry
Catalogue Service

S 10 | Solution 10: All domains Message Bus, EFPF Security Portal (EFS)
Business Network Intelligence

S 11 @ Solution 11: CE Message Bus, Integration Flow Engine, EFPF Security
Data Analytics Portal (EFS), Service Registry

S 12 | Solution 12: CE EFPF Security Portal (EFS)
Blockchain Application Aero-space

S 13 | Solution 13: CE Integration Flow Engine, EFPF Security Portal (EFS),
Online Bidding Process Service Registry

S 14 | Solution 14: CE EFPF Security Portal (EFS), Service Registry

System Security Modelling

Figure 81. Usage of Data Spine in the Pilot Solutions

2.10 Evaluation

The Data Spine is a core central component that enables security and communication in the
EFPF ecosystem and therefore, evaluating the realised Data Spine technology stack
concerning its performance and usability is very important. This section presents the
guantitative performance evaluation of the Data Spine followed by its usability evaluation
through surveys that were launched for pilots and Open Call experimenters.

2.10.1 Quantitative Evaluation

In this section, we evaluate the performance of the Data Spine approach by using the
integrated marketplace use case example illustrated in Figure 82. In the sample realisation
of the integrated marketplace solution, the Data Spine, through SSO, enables invoking the
endpoints of the base platforms’ marketplace services with a single set of EFPF credentials
and facilitates the data model transformation process using the integration flows.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 117/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

EFPF Integrated @
Marketplace GUI

__

1. Discover the 'marketplace’

Filter < services of the connected platforms EFPF Integrated

‘marketplace’ P
marketplace .| 2 calithem

services 3 P D e e Marketplace Backend

LN A *_

req req
res r‘(
Q Q res,

' ‘EPW-MP EP2-M,)
Service O | AP| Security Gateway oA EFPF Security
Registry

Portal (EFS)
Registered 1= -)
Service APIs: (P (P

EP1 EP2

Serve |EP1-M EP2-M [Serve

el [LA

z =
5 5
w w
c c
EP2-M; 2 { ‘ DM1 — DM3] DM3 — DM1 DM2 — DM3 DM3 — DM2] L 2
T @
g g
Invoke EP1 Invoke EP2
; Integration Flow
Data Spine A /L fL) Engine
Q' EP1 Er2 0
[

DM1 Marketplace Service Marketplace Service DM2

f COMPOSITION
58

DM - Data Model

Il L EP - Endpoint
Nm m EPr_EP's Proxy Endpoint

Figure 82. Integrated Marketplace Realisation Example

Without the use of the Data Spine, in the traditional approach, the developer of the integrated
marketplace must obtain user accounts for each of the base platforms, use those separate
sets of credentials for invoking the individual marketplace services of the base platforms and
write additional source code to perform the data model transformation locally. If the
developer uses specialised data model transformation tools locally, their deployment also
needs to be managed separately. The high-level workflows and API calls required for getting
a response from the base platforms’ marketplace services in the format expected by the
integrated marketplace for (a) the traditional approach, and (b) the Data Spine approach are
shown in Figure 83.

D3.12: EFPF Data Spine Realisation — Final Report - Vs: 1.0 - Public 118/ 296

http://www.efpf.org/

European Connected Factory Platform for Agile Manufacturing — www.efpf.org

NIMBLE Platform's > NIMBLE Platform's
Security Service Marketplace Service

Integrated
(a) Marketplace
Application

\ COMPOSITION COMPOSITION
Platform's Security e Platform's

Service Marketplace Service

NIMBLE Platform's 3 NIMBLE Platform's
Security Service Marketplace Service

Integrated API| Exposed by the

(b) Marketplace _— ProxybA;,P/-I\géposed ——> Integration Flow in
Application IFE

\ COMPOSITION COMPOSITION
Platform's Security ——»

Platform's
Service Marketplace Service

Figure 83. High-level workflows for realising the integrated marketplace solution: (a) the
traditional approach, and (b) the Data Spine approach.

Using the EFPF Development Environment setup, we performed a quantitative evaluation
of both approaches where the response times were measured as a sum of: (1) the time
taken for calling NIMBLE platform’s marketplace service and (2) the time taken for
transforming the response to adhere to the Integrated Marketplace’s data model. The
integrated marketplace applications were realised as Java programs that recorded the
response times. The Data Spine components were realised using the technologies
presented in Section 2.5. Apache NiFi, LinkSmart Service Catalog and RabbitMQ were
deployed on a machine with 2 vCPUs and 8 GiB RAM alongside 5 other Docker containers.
Apache APISIX and Keycloak were deployed on another machine at a different physical
location with 4 vCPUs and 16 GiB RAM alongside 14 other Docker containers. To minimise
the impact of public network traffic variations, the experiment was repeated 500 times for
each of the two approaches and the average response times were cal